

INSTITUTO MEXICANO DEL SEGURO SOCIAL

DIRECCIÓN DE FINANZAS

COORDINACIÓN DE ADMINISTRACION DE RIESGOS INSTITUCIONALES

DIVISIÓN DE SERVICIOS ACTUARIALES

Valuación Actuarial del Seguro de Invalidez y Vida al 31 de diciembre de 2018

Edición 2019

ÍNDICE GENERAL

I	Inf	orme d	de la valuación actuarial del Seguro de Invalidez y Vida	1			
	1.1	Introd	lucción	1			
	1.2	Métod	do de valuación	2			
		I.2.1 Prestaciones valuadas					
		1.2.2	Población valuada	4			
		1.2.3	Modelo de valuación actuarial	7			
		1.2.	.3.1 Descripción del modelo	7			
		1.2.	.3.2 Supuestos empleados en el modelo	7			
	1.3	Análisi	iis de los resultados	14			
		1.3.1	Resultados de la proyección demográfica	14			
		1.3.2	Resultados de la proyección financiera	15			
		1.3.3	Análisis de la Situación Financiera	18			
		1.3.	.3.1 Análisis del Balance Actuarial	19			
		1.3.4	Análisis de los resultados de los escenarios de sensibilización	20			
	1.4	Resum	nen y conclusiones	22			
П	Ba	ses der	mográficas	25			
	11.1		ero de asegurados y modalidades de aseguramiento que se consido valuación actuarial del Seguro de Invalidez y Vida				
	II.2		ración actual de trabajadores asegurados el Seguro de Invalidez y ños reconocidos y edades alcanzadas				
	11.3	Hipóte	esis demográfica de crecimiento de asegurados	31			
	11.4	Factor	res de distribución de nuevos ingresantes	32			
	11.5	Densid	dad de cotización	32			
Ш	Ва	ses fina	ancieras	33			
	III.1		ctura por edad y salario promedio diario de cotización de la genera nta de trabajadores asegurados en el SIV				
	III.2		promedio acumulado en la cuenta individual de los asegurados Generación conjunta. Cifras en pesos de 2018	•			
	111.4		ación por Cuota social a la subcuenta de Retiro Cesantía en E ada y Vejez				
IV	Ва	se Lega	al	36			

	IV.1	Antecedentes	36
	IV.2	Cuantía de la pensión	36
	IV.3	Salarios promedio diarios nominales y actualizados en cada año	37
V	Ва	ses Biométricas	39
	V.1	Probabilidades de permanecer como activo. Hombres y Mujeres 2019	39
	V.2	Probabilidades de permanecer como activo. Hombres y Mujeres 2020	40
	V.3	Probabilidades de permanecer como activo. Hombres y Mujeres 2021	41
	V.4	Probabilidades de permanecer como activo. Hombres y Mujeres 2022-2118	42
	V.5	Probabilidades de salida de la actividad laboral a causa de una invalidez. Hombres y Mujeres 2019.	
	V.6	Probabilidades de salida de la actividad laboral a causa de una invalidez. Hombres y Mujeres 2020.	
	V.7	Probabilidades de salida de la actividad laboral a causa de una invalidez. Hombres y Mujeres 2021	
	V.8	Probabilidades de salida de la actividad laboral a causa de una invalidez. Hombres y Mujeres 2022-2118	
	V.1	Número de componentes familiares por cada pensionado	47
	V.2	Número de componentes familiares por cada asegurado o pensionado fallecido	
	V.3	Número de componentes familiares por cada pensionado y asegurado o pensionado fallecido	
	V.4	Tasas de mortalidad de inválidos y tasas de mortalidad de activos para la seguridad social para el capital mínimo de garantía (CMG), que sirven de base para el cálculo de las anualidades	
	V.5	Tasas de mejora aplicables a la mortalidad de activos para la seguridad social, que sirven de base para el cálculo de las anualidades	
	V.6	Tasas de deserción escolar para la seguridad social, que sirven de base para el cálculo de las anualidades	
V١	No	ta Técnica	52
	VI.1	Notación	53
	VI.2	Proyección demográfica	55
		VI.2.1 Proyección de Asegurados	55
		VI.2.1.1 Proyección de los Asegurados vigentes	55
		Generación Actual	56

	OC.	neración futura bajo la LSS vigente	
	VI.2	2.1.2 Bajas de Asegurados	58
	VI.2.2	Proyección de Pensionados	59
	VI.2	2.2.1 Pensionados por invalidez	61
	VI.2.3	Proyección de Pensiones Derivadas del Fallecimiento d Asegurado	
VI.3	Proyec	cción financiera	64
	VI.3.1	Estimación de los Componentes Financieros	65
	VI.3	3.1.1 Estimación del Volumen de Salarios	65
	VI.3	3.1.2 Estimación del Saldo Acumulado en la Cuenta Individual	66
	VI.3.2	Estimación del Gasto por Pensiones del Seguro de Invalidez y Vi	da73
	VI.3	3.2.1 Estimación del Monto Constitutivo	73
	VI.3	3.2.2 Cuantía básica e importe de la pensión	73
	VI.3	3.2.3 Estimación de las anualidades	74
	VI.3	3.2.4 Estimación del Monto Constitutivo	76
	VI.3	3.2.5 Estimación de la suma asegurada	80
		os de la valuación actuarial del Seguro de Invalidez y Vida al	
di	ciembre	•	83
di	ciembre	e de 2018	83 83
di	ciembre I Genera	e de 2018 ación conjunta (Generación Actual y Generación Futura)	83 83 83 njunta.
di VII.	Ciembre I Genera VII.1.1 VII.1.2	e de 2018. ación conjunta (Generación Actual y Generación Futura) Proyección demográfica de pensiones iniciales Flujo de gasto de las prestaciones valuadas. Generación cor	83 83 83 njunta. 84
di VII.	VII.1.1 VII.1.2 2 Genera	e de 2018	8383 njunta84
di VII.	VII.1.2 General VII.1.2 General VII.2.1	e de 2018	8383 njunta848585 pesos
di VII.	VII.1.1 VII.1.2 2 Genera VII.2.1 VII.2.2	e de 2018	8383 njunta8485 pesos86 Actual.
di VII.	VII.1.1 VII.1.2 General VII.2.1 VII.2.2 VII.2.3	e de 2018	8383 njunta8485 pesos86 Actual87 to de nporal.

VII.2.6	Saldo acumulado en la cuenta individual, inválidos. Generación Actual. Millones de pesos de 201890
VII.2.7	Saldo acumulado en la cuenta individual, fallecidos de asegurados y pensionados de invalidez con carácter temporal. Generación Actual. Millones de pesos de 201891
VII.3 Genera	nción Futura92
VII.3.1	Proyección demográfica de pensiones iniciales92
VII.3.2	Flujo de gasto por pensiones. Generación Futura. Millones de pesos de 201893
VII.3.3	Composición del flujo de gasto de invalidez. Generación Futura. Importes en millones de pesos de 201894
VII.3.4	Composición del flujo de gasto derivado del fallecimiento de asegurados y pensionados de invalidez con carácter temporal. Generación Futura. Importes en millones de pesos de 201895
VII.3.5	Saldo acumulado en la cuenta individual, asegurados activos. Generación Futura. Millones de pesos de 201896
VII.3.6	Saldo acumulado en la cuenta individual, inválidos. Generación Futura. Millones de pesos de 201897
VII.3.7	Saldo acumulado en la cuenta individual, fallecidos de asegurados y pensionados de invalidez con carácter temporal. Generación Futura. Millones de pesos de 2018
Anexo 1. Índice	e de Cuadros99
Anexo 2. Índic	e de Gráficas100

I Informe de la valuación actuarial del Seguro de Invalidez y Vida

I.1 Introducción

El artículo 273 de la Ley del Seguro Social (LSS) es el cimiento para que el Instituto Mexicano del Seguro Social (IMSS) lleve a cabo la valuación actuarial del Seguro de Invalidez y Vida (SIV). Los resultados de dicho estudio forman parte de dos de los principales informes de gestión, y que dan cumplimiento a lo que se establece en los artículos 261, 262 y 273 de la Ley del Seguro Social; los cuales son:

- Informe al Ejecutivo Federal y al Congreso de la Unión sobre la Situación Financiera y los Riesgo del IMSS.
- · Informe Financiero y Actuarial.

El objetivo de este documento es proporcionar a las autoridades del IMSS un diagnóstico técnico sobre la situación financiera del SIV al 31 de diciembre de 2018. El documento presenta un análisis a través del cual se puede determinar si la prima de ingreso establecida en la LSS para este seguro¹ es suficiente para cubrir los gastos actuales y futuros derivados del otorgamiento de las prestaciones en dinero que se dan a la población derechohabiente de acuerdo a lo que dispuesto en la LSS, incluyendo los gastos de administración.

El documento está organizado en siete secciones:

- I. Informe de la valuación actuarial;
- II. Bases demográficas;
- III. Bases financieras:
- IV. Base legal;
- V. Bases biométricas;
- VI. Nota técnica del modelo; v.
- VII. Resultados de la valuación actuarial.

La sección "I. Informe de la valuación" se compone de tres apartados:

- **Método de valuación.** En él se describen las prestaciones valuadas, la información demográfica y financiera utilizada, así como el modelo de valuación.
- Análisis de resultados. En este apartado, como su nombre lo indica se analizan los resultados del escenario base para el periodo de 50 años y 100 años, así como los que corresponden al sensibilizar algunos de los supuestos.
- Resumen y conclusiones. Se destaca los principales resultados obtenidos en la valuación actuarial.

¹ Para el Seguro de Invalidez y Vida la prima de ingreso es de 2.5% de los salarios de cotización.

1.2 Método de valuación

I.2.1 Prestaciones valuadas

El Seguro de Invalidez y Vida protege a los asegurados de los riesgos relacionados con la invalidez² y la muerte del asegurado o del pensionado por invalidez, y concede a éstos las prestaciones en dinero que este seguro otorga.

En el cuadro 1 se describen los requisitos y condiciones que deben cumplir los asegurados para tener derecho a las prestaciones en dinero de acuerdo a lo que estipula la LSS.

Cuadro 1. Prestaciones y Requisitos del Seguro de Invalidez y Vida

Prestación	Requisitos	Beneficio	Consideraciones
Pensión de invalidez con carácter temporal o definitivo.	250 semanas cotizadas si la invalidez es menor al 75%. 150 semanas cotizadas si la invalidez es igual o mayor al 75%. Artículos 120, 122, 141 y 146 de la LSS	Pensión vitalicia o hasta la rehabilitación. El importe de la pensión es equivalente a una cuantía básica del 35% del promedio de los salarios correspondientes a las últimas 500 semanas de cotización, actualizados conforme al INPC, más asignaciones familiares, ayudas asistenciales y aguinaldo anual. La pensión no podrá ser menor a la pensión garantizada. Los pensionados por invalidez deberán contratar un seguro de sobrevivencia, para que en el momento de su fallecimiento, se les otorgue a sus beneficiarios una pensión, de acuerdo a lo establecido en los puntos 3, 4 y 5 de este cuadro.	Para otorgar la pensión y el seguro de sobrevivencia, el Instituto calculará el monto constitutivo necesario, al cual se le restará el saldo acumulado en la cuenta individual del trabajador, siendo la diferencia positiva la suma asegurada que el IMSS pagará a la institución de seguros que el trabajador haya elegido para que le pague su pensión mensual.

² Existe invalidez cuando el asegurado se halle imposibilitado para procurarse, mediante un trabajo igual, una remuneración superior al cincuenta por ciento de su remuneración habitual percibida durante el último año de trabajo y que esa imposibilidad derive de una enfermedad o accidente no profesionales.

Informe

Prestación	Requisitos	Beneficio	Consideraciones
2. Fallecimiento del asegurado o del pensionado.	Que el asegurado al fallecer tuviera un mínimo de 150 semanas cotizadas, o bien, que se encuentre disfrutando de una pensión de invalidez. El fallecimiento del asegurado o del pensionado debe ser a causa de una enfermedad o accidente no laboral. Artículos 127, 128 y 146 de la LSS.	Cuando ocurra la muerte del asegurado o del pensionado por invalidez, sus beneficiarios tendrán derecho a una pensión con base en lo establecido en los puntos 3, 4 y 5 de este cuadro.	Para otorgar la pensión el Instituto deberá cubrir a la institución de seguros la suma asegurada correspondiente. En caso del fallecimiento de un pensionado por invalidez, la pensión será con cargo al seguro de sobrevivencia que haya contratado el pensionado.
3. Pensión de viudez	Los establecidos en el punto 2 de este cuadro. En caso de viudo deberá comprobar dependencia económica. Artículos 127, 128, 130, 131 y 133 de la LSS.	Pensión vitalicia equivalente al 90% de la que hubiera correspondido al asegurado en caso de invalidez o de la que venía disfrutando el pensionado por invalidez. En caso de nuevas nupcias, se otorgará un finiquito de 3 anualidades de la pensión.	Los beneficiarios elegirán la institución de seguros con la que deseen contratar el pago de la renta vitalicia, la cual se financiará con la suma asegurada que pagará el Instituto para tal efecto.
4. Pensión de Orfandad	Los establecidos en el punto 2 de este cuadro. Artículos 127, 128, y 137 de la LSS.	Pensión hasta los 16 años, y en caso de que el huérfano continúe estudiando se prolongará hasta los 25, o hasta ser sujeto del régimen obligatorio, o hasta que desaparezca la incapacidad. • Para huérfanos de padre o madre, el importe de la pensión será del 20% de la pensión de invalidez. • Para huérfanos de padre y madre, el importe de la pensión será del 30% de la pensión será del 30% de la pensión de invalidez.	
		Al término de la pensión de orfandad se otorgará un finiquito de tres mensualidades de la pensión.	
5. Pensión de ascendencia	Los establecidos en el punto 2 de este cuadro. Además se deberá comprobar dependencia económica.	A falta de viuda(o) o huérfanos,	

Informe

Prestación	Requisitos	Beneficio	Consideraciones
6. Asignaciones familiares A la esposa o concubina e hijos del pensionado por invalidez.	Que esté vigente la pensión. Artículos 127, 128, y 137 de la LSS. Artículo 138 LSS.	Esposa o concubina del pensionado, 15% de la cuantía de la pensión. Hijos, 10% de la cuantía de la pensión. En caso de no existir los anteriores con derecho a pensión, se otorgará a cada uno de los padres 10% de la cuantía de la pensión.	
7. Ayuda asistencial al pensionado por invalidez, así como a las viudas pensionadas.	'	15% de la cuantía de la pensión cuando no tenga beneficiario. 10% de la cuantía de la pensión, si tuviera un ascendiente con derecho al disfrute de asignación familiar. Hasta un 20% al pensionado por invalidez o viudas(o) pensionadas(o) cuando requieran ineludiblemente que los asista otra persona.	
8. Aguinaldo	Que esté vigente la pensión. Artículo 142 LSS.	Pago anual de 30 días del importe de la pensión.	
9. Incremento periódico de las pensiones	Que esté vigente la pensión. Artículo 145 de la LSS.	Las pensiones por invalidez y vida se incrementaran anualmente en el mes de febrero conforme al Índice Nacional de Precios al Consumidor.	

Fuente: Ley del Seguro Social.

I.2.2 Población valuada

Para llevar a cabo la valuación actuarial del Seguro de Invalidez y Vida, la población inicial contemplada corresponde a los asegurados vigentes al 31 de diciembre de 2018, y a los pensionados por invalidez con carácter temporal también vigentes al 31 de diciembre de 2018.

Población de asegurados

Los asegurados que se emplea para la valuación actuarial se integra con los trabajadores del apartado A del artículo 123 Constitucional³. Esta población es la que podría solicitar y recibir del IMSS alguna de las prestaciones establecidas en la LSS para el SIV.

La estimación del gasto por pensiones se realiza con los asegurados que cotizan al SIV y que al cierre de 2018 asciende a 19'835,446 asegurados⁴, a este grupo se le denomina generación actual de asegurados y constituye un grupo cerrado.

³ Los trabajadores del IMSS pertenecen al Apartado A del artículo 123 constitucional, conforme a lo establecido en el Artículo 256 de la Ley del Seguro Social.

⁴ Para el Seguro de Invalidez y Vida el número de asegurados está conformado por los afiliados en las siguientes modalidades de aseguramiento según régimen: Régimen Obligatorio: Modalidad 10: Trabajadores permanentes y eventuales de la ciudad; Modalidad

Para efectos de evaluar las obligaciones del Instituto para con esta generación, esta se diferencia de acuerdo al régimen de pensión⁵ al que tienen derecho, para lo cual se clasifican en dos grupos:

- Trabajadores afiliados al Instituto antes del 1º de julio de 1997, denominados "asegurados de la generación en transición" (GT), quienes de acuerdo a lo establecido en los artículos Tercero y Duodécimo transitorios de la reforma a la LSS del 12 de diciembre de 1995º, tienen la opción de elegir entre los beneficios de pensión que otorga la LSS derogada (LSS de 1973), y los beneficios de pensión que otorga la LSS de 1997 (gasto con cargo a los ingresos por cuotas de este seguro).
- Trabajadores que se afiliaron al Instituto a partir del 1º de julio de 1997, denominados "asegurados de la generación actual bajo la LSS de 1997" (GA L97), que son los que tienen derecho a los beneficios otorgados por la LSS vigente, mismos que se cubren con los ingresos por cuotas del SIV.

El cuadro 2 muestra el número de asegurados, así como la edad y antigüedad promedio al 31 de diciembre de 2018 separada por sexo y generación.

Cuadro 2. Principales Estadísticas de la Población Considerada en la Valuación Actuarial del Seguro de Invalidez y Vida al 31 de Diciembre de 2018

Concepto	Hombres	Mujeres	Total
Generación en Transición (GT)			
Número de asegurados	4,182,525	2,079,327	6,261,852
Edad promedio (años)	49.5	48.6	49.2
Antigüedad promedio (años)	26.6	25.8	26.3
Generación actual bajo la LSS de 1997 (GA			
Número de asegurados	8,205,981	5,367,613	13,573,594
Edad promedio (años)	30.6	31.6	31.0
Antigüedad promedio (años)	8.4	8.0	8.2
Total			
Número de asegurados	12,388,506	7,446,940	19,835,446
Edad promedio (años)	36.9	36.4	36.7
Antigüedad promedio (años)	14.5	12.9	13.9

Fuente: Dirección de Finanzas. IMSS

^{13:} Trabajadores permanentes y eventuales del campo; Modalidad 14: Trabajadores eventuales del campo cañero; Modalidad 17: Reversión de cuotas por subrogación de servicios; y, Modalidad 30: Productores de caña de azúcar; y, Régimen voluntario: Modalidad 35: Patrones personas físicas con trabajadores a su servicio; Modalidad 40: Continuación voluntaria en el Régimen Obligatorio; Modalidad 42: Trabajadores al servicio de los gobiernos de los estados; Modalidad 43: Incorporación voluntaria del campo al Régimen Obligatorio, y Modalidad 44: Trabajadores independientes.

⁵ La separación de los asegurados por régimen de pensión se hace exclusivamente para llevar a cabo las valuaciones actuariales y se efectúa tomando en cuenta el año de asignación del número de seguridad social del asegurado.

⁶ Artículo Tercero transitorio de la reforma a la LSS del 12 de diciembre de 1995: "Los asegurados inscritos con anterioridad a la fecha de entrada en vigor de esta Ley, así como sus beneficiarios, al momento de cumplirse, en términos de la Ley que se deroga, los supuestos legales o el siniestro respectivo para el disfrute de cualquiera de las pensiones, podrán optar por acogerse al beneficio de dicha Ley o al esquema de pensiones establecido en el presente ordenamiento".

Artículo Duodécimo transitorio de la reforma a la LSS del 12 de diciembre de 1995 de la Ley que entró en vigor el 1º de julio de 1997: "Estarán a cargo del Gobierno Federal las pensiones que se encuentren en curso de pago, así como las prestaciones o pensiones de aquellos sujetos que se encuentren en período de conservación de derechos y las pensiones que se otorguen a los asegurados que opten por el esquema establecido por la Ley que se deroga."

Población de pensionados

El número de pensionados vigentes por invalidez con carácter temporal⁷ a diciembre de 2018 ascendió a 25,683. De acuerdo a como se ha observado el otorgamiento de las pensiones en el periodo de 1998 a 2017, en un lapso de aproximadamente tres años a los pensionados por invalidez con carácter temporal se les otorga la pensión definitiva. Si estos pensionados fallecen en el transcurso de ese periodo, sus beneficiarios tendrán derecho a las pensiones que les correspondan ya sea por viudez, orfandad y ascendencia.

De estos pensionados el 62.7% provienen de asegurados de la generación en transición, los cuales pueden elegir entre los beneficios de la LSS de 1973 y la LSS de 1997, y sólo una pequeña proporción generarán una pensión bajo la LSS de 1997, ya sea de invalidez definitiva, o en caso de fallecimiento una pensión derivada, por viudez, orfandad o ascendencia. Para los pensionados o beneficiarios que elijan pensionarse bajo los beneficios de la LSS de 1973, el costo de esas pensiones será con cargo al Gobierno Federal⁸, por lo tanto sus pensiones no forman parte de esta valuación.

El 37.3% restante tiene derecho únicamente a los beneficios que otorga la LSS de 1997, mismos que generarán una pensión definitiva de invalidez, o en caso de fallecimiento antes de su vencimiento, se les otorgarán a sus beneficiarios las pensiones derivadas por viudez, orfandad o ascendencia según correspondan, bajo el esquema de rentas vitalicias.

En el cuadro 3, se presenta el número y edad promedio de los pensionados por invalidez con estatus temporal vigentes al 31 de diciembre de 2018, diferenciados por sexo y régimen.

⁷ Artículo 121 de la LSS: Pensión temporal es la que otorgue el Instituto, con cargo a este seguro, por períodos renovables al asegurado en los casos de existir posibilidad de recuperación para el trabajo, o cuando por la continuación de una enfermedad no profesional se termine el disfrute del subsidio y la enfermedad persista. Es pensión definitiva la que corresponde al estado de invalidez que se estima de naturaleza permanente.

⁸ De acuerdo con lo establecido en el artículo Duodécimo transitorio de la reforma a la LSS del 21 de diciembre de 1995.

Cuadro 3. Pensionados por Invalidez con Pensión Temporal Vigentes al 31 de Diciembre de 2018

Concepto	Hombres	Mujeres	Total				
Pensionados con Elección de Régimen							
Número de Pensionados	11,365	4,748	16,113				
Edad promedio (años)	50.97	50.14	50.73				
Pensionados con Derecho a los Beneficios Bajo la LSS de 1997							
Número de Pensionados	5,978	3,592	9,570				
Edad promedio (años)	38.03	43.29	40.00				
Total de Pensionados							
Número de Pensionados	17,343	8,340	25,683				
Edad promedio (años)	46.51	47.19	46.73				

Nota: En caso de que un pensionado con derecho a elección de régimen fallezca antes de que se le otorgue una pensión definitiva, serán sus beneficiarios con derecho a pensión quienes elijan si la pensión se otorgará bajo la LSS de 1997.

Fuente: Dirección de Finanzas, IMSS

I.2.3 Modelo de valuación actuarial

I.2.3.1 Descripción del modelo

El modelo de la valuación actuarial evalúa las obligaciones por pensiones a través del "Método de Proyecciones Demográficas y Financieras (MPDF)", este se utiliza por recomendación de la Organización Internacional del Trabajo. Consiste en integrar de manera directa, tanto en sus valores básicos como en los mecanismos de cálculo, los elementos demográficos y económicos que intervienen en el otorgamiento de las pensiones, como son: el crecimiento futuro de asegurados y de sus salarios de cotización; las bases biométricas con las cuales se proyecta la incidencia de pensiones; y las variables principales que se emplean para el cálculo de los montos constitutivos y de las sumas aseguradas.

Este modelo permite que la valuación actuarial se realice a grupo abierto, esto significa que además de los asegurados de la generación actual (grupo cerrado), se incorporen a los nuevos asegurados en cada año de proyección, los cuales se valuarán considerando que tienen derecho a los beneficios establecidos en la LSS de 1997.

De igual forma, mediante de los resultados obtenidos a través del modelo es posible estimar el costo de los gastos de administración.

I.2.3.2 Supuestos empleados en el modelo

El modelo de la valuación actuarial incorpora elementos demográficos y financieros, mismos que fueron acordados entre el Instituto y el despacho externo que realizó la

Informe

auditoría a la Valuación Financiera y Actuarial al 31 de diciembre de 2018⁹, y que se obtuvieron con base en estadísticas institucionales y externas.

Por su parte los supuestos demográficos permiten medir los cambios poblacionales tanto de los asegurados como de los pensionados. Mientras que los supuestos financieros consideran el crecimiento real de los salarios de cotización, la inflación y la tasa de interés real para la inversión de los saldos acumulados en las cuentas individuales de Retiro, Cesantía en Edad Avanzada y Vejez; y de Vivienda.

Asimismo, la valuación actuarial contempla supuestos adicionales que influyen en las proyecciones demográficas y financieras, como son los factores que se emplean para simular la elección de régimen y el otorgamiento de las pensiones de carácter temporal y definitivo.

Los supuestos que se acuerdan son para un escenario base, el cual se considera como el que mejor refleja el comportamiento observado en los últimos años. Considerando que las proyecciones de la valuación actuarial se basan en supuestos demográficos y financieros, los cuales pueden variar en el tiempo, se evalúan dos escenarios de sensibilidad que miden el efecto en el gasto por pensiones a partir de la modificación de algunos de los supuestos utilizados en el escenario base:

- El escenario de riesgo 1 (moderado) considera que la tasa de interés de largo plazo para el cálculo de los montos constitutivos pasa de 3% a 2.5%.
- Escenario de riesgo 2 (catastrófico) supone que la tasa de interés para el cálculo de los montos constitutivos en el largo plazo es igual a 2%; además, asume que ningún asegurado cuenta con saldo en la Subcuenta de Vivienda al momento de tener derecho a una pensión por invalidez o al momento del fallecimiento para el financiamiento de las pensiones derivadas.

1) Supuestos demográficos y financieros

Los principales supuestos demográficos y financieros utilizados para el escenario base, el escenario de riesgo 1 (moderado) y el escenario de riesgo 2 (catastrófico) se muestran en el cuadro 4.

⁹ Lockton México, Agente de Seguros y Fianzas, S.A. de C.V.

Cuadro 4. Principales Supuestos Demográficos y Financieros utilizados en la Valuación Actuarial del Seguro de Invalidez y Vida para el periodo de 100 años

Sunuartas	Base	Riesgo 1	Riesgo 2
Supuestos	(%)	(%)	(%)
Financieros			
Tasa de incremento real anual de los salarios	0.36	0.36	0.36
Tasa de incremento real anual de los salarios mínimos	0.62	0.62	0.62
Tasa de incremento real anual de la Unidad de Medida y Actualización	0.00	0.00	0.00
Tasa de descuento	3.00	3.00	3.00
Tasa de rendimiento real anual de la Subcuenta de Retiro, Cesantía en	3.00	3.00	3.00
Edad Avanzada y Vejez	5.00	5.00	5.00
Tasa de rendimiento real anual de la Subcuenta de Vivienda	2.50	2.50	
Tasa de interés real anual para el cálculo de las anualidades (largo plazo)	3.00	2.50	2.00
Porcentaje promedio de asegurados que aportan a la Subcuenta de Vivienda, es decir, que no cuentan con un crédito hipotecario	50.00	50.00	
Demográficos			
Incremento promedio anual de asegurados	1.42	1.42	1.42

Fuente: Dirección de Finanzas, IMSS

En la sección 1.3.3 se muestran los resultados de la valuación actuarial para los escenarios de riesgo.

Dentro de los supuestos adicionales a los enunciados en el cuadro 4, se encuentran los siguientes:

a) Demográficos

i) <u>Crecimiento de asegurados</u>

Para la valuación actuarial al 31 de diciembre de 2018, el supuesto de crecimiento de asegurados se estimó considerando tanto el crecimiento de la Población Económicamente Activa, como el crecimiento del empleo en el IMSS. Este supuesto se determina como la relación entre la creación de empleos formales y el crecimiento económico, medido en función del Producto Interno Bruto.

El incremento promedio de asegurados para el periodo de 100 años pasó de 1.2 utilizado en la valuación al 31 de diciembre de 2017, a 1.4 para la valuación actuarial de 2018.

ii) Densidad de cotización

La densidad de cotización mide el tiempo promedio que cotizan los asegurados en un año y a partir de esta variable se determina la antigüedad en años de los asegurados.

La acumulación de antigüedad como asegurados en el IMSS está relacionada con la acumulación de recursos en su cuenta individual, misma que se utilizará para el financiamiento de los montos constitutivos requeridos para el pago de una renta vitalicia.

iii) Distribución de nuevos ingresantes

Este supuesto se utiliza para distribuir por edad a los nuevos asegurados que se incorporan en cada año al Instituto, y que en el transcurso del tiempo estarán expuestos a una eventualidad que los invalide de forma permanente o les cause la muerte.

iv) <u>Matriz de componentes familiares de pensionados directos y de los derivados</u> <u>del fallecimiento de los asegurados</u>

Para calcular el seguro de sobrevivencia y el seguro de vida se utiliza el número de componentes familiares por pensionado, así como el número de beneficiarios por asegurado o pensionado fallecido, respectivamente.

En el caso del seguro de sobrevivencia el número de componentes familiares se obtiene aplicando las matrices de cónyuges, hijos y padres de pensionados por invalidez e incapacidad permanente. A diciembre de 2018 el número promedio de componentes familiares por pensionado fue de 1.3 personas. Mientras que el número de componentes según el sexo del pensionado es de acuerdo a lo siguiente:

- Hombres: el número de componentes promedio (cónyuges, hijos y padres) es de 1.5 por cada pensionado. Del mismo modo, registran en promedio 0.53 esposas y 0.0001 esposos por cada pensionado. Para los cónyuges del mismo sexo, el supuesto para la estimación de largo plazo se incrementa en promedio por año en 6.3%, hasta alcanzar en el año 100 de proyección un promedio de 0.04 esposos.
- Mujeres: el número de componentes promedio (cónyuges, hijos y padres) es de 0.71 por cada pensionada. Igualmente, registran en promedio 0.04 esposos y 0.001 esposas por cada pensionada. Para la estimación de largo plazo se considera:
 - i) El número promedio de esposos pasa de 0.04 en 2018 a 0.43 en el año 2118, incrementándose en promedio 2.4% anual. Para el año 100 de proyección, se supone un nivel similar al registrado para las cónyuges de los pensionados hombres (0.53), esto se supone debido a la eliminación del requisito de dependencia económica para los hombres.
 - ii) El número promedio de esposas pasa de 0.001 en 2018 a 0.10 en el año 2118, incrementándose en promedio por año en 4.6%.

Para el cálculo del seguro de muerte, los componentes familiares se calculan utilizando las matrices de viudez, orfandad y ascendencias de asegurados y/o pensionados fallecidos. El número promedio de componentes por cada asegurado o pensionado fallecido es de 2.2 personas. El número de componentes de acuerdo al sexo del asegurado o pensionado fallecido es conforme a lo siguiente:

Hombres: el número de componentes promedio (viudez, orfandad y ascendencia) es de 2.3 por cada fallecido. Y registran en promedio 0.85 viudas por cada fallecido y 0.0002 viudos por cada fallecido. Para los cónyuges del mismo sexo, el supuesto para la estimación de largo plazo el promedio por año se incrementa en 2.5%, hasta alcanzar en el año 100 de proyección un promedio de 0.0026 viudos.

- Mujeres: el número de componentes promedio (viudez, orfandad y ascendencia) es de 1.70 por cada fallecida. Registrando en promedio 0.48 viudos y 0.001 viudas por cada fallecida. La estimación de largo plazo considera:
 - i) El número promedio de viudos pasa de 0.48 en 2018 a 0.49 en el año 2118, incrementándose en promedio por año en 0.01%. Para el año 100 de proyección, se supone un nivel similar al registrado para las cónyuges de los pensionados hombres (0.53), esto se supone debido a la eliminación del requisito de dependencia económica para los hombres.
 - ii) El número promedio de viudas pasa de 0.001 en 2018 a 0.008 en el año 2118, incrementándose en promedio por año en 1.8%.

La separación de los supuestos por sexo para el largo plazo, se realizó a partir de la valuación actuarial con corte a diciembre de 2018, con el fin de reconocer por parte del IMSS el derecho a las prestaciones en dinero de los beneficiarios de las mujeres aseguradas o pensionadas bajo las mismas condiciones que para los beneficiarios de asegurados o pensionados, así como de las personas aseguradas o pensionadas de las parejas del mismo sexo.

v) Bases biométricas

Las bases biométricas que se utilizan en la valuación actuarial se dividen en:

- Bases biométricas de salida de la actividad laboral como asegurado. Corresponde a las probabilidades de que a un asegurado le ocurra una contingencia por enfermedad, incapacidad o fallecimiento a causa de un riesgo o enfermedad laboral o no laboral. Estas probabilidades son estimadas por parte de un despacho externo.
 - A las probabilidades de salida de la actividad laboral de los trabajadores no IMSS, se les realizó un ajuste¹⁰ para la valuación actuarial al 31 de diciembre de 2018, a fin de que el número de salidas fuera más acorde con lo registrado por el IMSS.
- Bases biométricas de sobrevivencia de pensionados. Se refiere a las probabilidades de muerte que emite la Comisión Nacional de Seguros y Fianzas para el cálculo de los montos constitutivos para la contratación de las rentas vitalicias y de los seguros de sobrevivencia que se establecen en los seguros de pensiones derivados de la LSS. Dichas probabilidades son las siguientes:
 - i) Experiencia demográfica de mortalidad para incapacitados 2012, conjunta para hombres y mujeres (EMSSInc-IMSS-CMG-2012)¹¹.
 - ii) Experiencia demográfica de mortalidad para activos 2009, separada para hombres y mujeres (EMSSA_H-09 y EMSSA_M-09)¹², que se aplica a los componentes familiares de inválidos e incapacitados (esposa(o), hijos y padres), así como a los componentes familiares de asegurados fallecidos

¹⁰ El ajuste de las probabilidades lo realizó el despacho auditor externo Lockton México, Agente de Seguros y de Fianzas, S. A. de C. V ¹¹ Probabilidades de muerte de pensionados por incapacidad de capital mínimo de garantía (CMG), establecidas en la Circular Modificatoria 31/12 de la Única de Seguros emitida en el Diario Oficial el 11 de junio de 2012 por la Comisión Nacional de Seguros y Fianzas (CNSF).

¹² Probabilidades de muerte de no inválidos de CMG, establecidas en la Circular S-22.2 emitida el 19 de noviembre de 2009 por la CNSF.

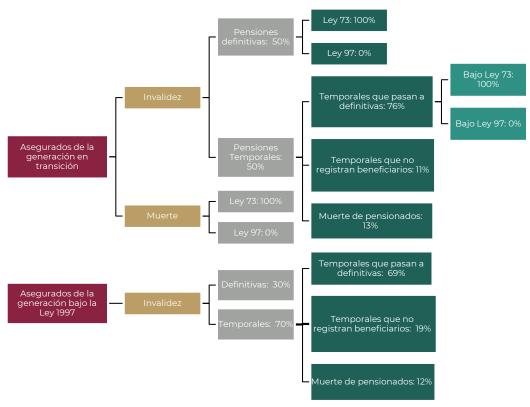
(viuda(o), huérfanos y ascendientes). Para estas probabilidades, la circular S-22.2 establece que deben ser proyectadas con factores de mejora para cada edad y año calendario. En la valuación actuarial la proyección de la mortalidad de activos con factores de mejora se hace hasta el año 2050.

vi)Árboles de decisión

El árbol de decisión muestra la forma en que las pensiones¹³ se distribuyen de acuerdo a su carácter, ya sea definitivo o temporal. Para su construcción se considera el número de pensiones iniciales de invalidez y fallecimiento, además se verifica si son pensiones bajo la LSS de 1997 o bajo la LSS de 1973.

Para los asegurados con derecho a elección de régimen, el árbol de decisión simula lo siguiente:

- Determina el número de pensiones definitivas que se otorgarán bajo la LSS de 1997.
- Estima el número de pensiones que se otorgarán con carácter temporal y que serán con cargo a los ingresos por cuotas del SIV.
- En caso de que un pensionado con carácter temporal fallezca antes de que se otorgue la pensión definitiva, se estima la proporción de pensiones derivadas que se otorgarán bajo la LSS de 1997.
- Al transcurrir los tres años se determina el número de pensiones definitivas a las que se les otorgará una renta vitalicia de acuerdo a lo que establece la LSS de 1997.


Un elemento que incide en los asegurados de esta generación para que elijan pensionarse bajo los beneficios de la LSS de 1973, es que el monto de la pensión es más alta ya que considera incrementos adicionales a la cuantía básica, siempre que el asegurado haya cotizado más de 10 años, además pueden retirar el saldo que tienen acumulado en la cuenta individual correspondiente a la aportación del 2% que hizo por concepto de retiro más el saldo de la subcuenta de vivienda.

Para los asegurados de la generación actual bajo la LSS de 1997, únicamente se simula el número de pensiones que se otorgarán con carácter definitivo o temporal.

La gráfica 1 muestra las distribuciones del árbol de decisión que se utilizan en el modelo, mismas que se aplican a las pensiones iniciales estimadas para los trabajadores no IMSS en cada año de proyección.

En el caso de los empleados del IMSS que pertenecen a la generación en transición, no se aplica el árbol de decisión, debido a que estos trabajadores tienen sus derechos adquiridos bajo la LSS de 1973, así como también existe el incentivo por recuperar el saldo de la cuenta individual correspondiente a retiro.

¹³ Para elaborar los árboles de decisión se consideran como pensiones iniciales aquellas que empiezan a tramitarse en las Jefaturas delegacionales de Prestaciones Económicas y Sociales del IMSS, a partir de la fecha en que los beneficiarios las solicitan, previo cumplimiento de los requisitos estipulados en la Ley. En el caso de las pensiones definitivas, únicamente se consideran como iniciales aquellas que no tienen antecedente de una pensión temporal o provisional. Para determinar las pensiones iniciales se utilizó la información del periodo de 2013 a 2015, esto debido a que dicha información es la que se considera que mejor refleja la elección de régimen de pensiones de los asegurados.

Gráfica 1. Árbol de decisión del Seguro de Invalidez y Vida

Fuente: Dirección de Finanzas, IMSS.

vii) <u>Duración de las pensiones con carácter temporal</u>

A pesar de que el artículo 121 de la LSS no establece un periodo determinado para otórgales el carácter de definitivas, la práctica mundial y la del propio Instituto va en la dirección del fortalecimiento de la rehabilitación y la reinserción de los trabajadores al mercado laboral.

El modelo de la valuación considera una temporalidad de 3 años para las pensiones de invalidez, esto debido a que en promedio permanecen como temporales 2.5 años, más medio año que es el tiempo que se considera requiere el IMSS para que oferte ante las compañías aseguradoras el otorgamiento de la renta vitalicia.

b) Financieros

i) <u>Crecimiento real de salarios generales</u>

El crecimiento real de los salarios generales se determinó considerando la elasticidad¹⁴ que existe entre el salario diario de cotización y la inflación promedio

¹⁴ La elasticidad mide la sensibilidad entre 2 variables, y se define como la variación porcentual de una variable X en relación con una variable Y. La elasticidad del salario histórico del IMSS respecto a la inflación histórica se mide como la razón de las variaciones anuales al cierre de cada año del salario IMSS e inflación. Para la estimación del crecimiento real de los salarios se utilizó una elasticidad de 1.1

de cada año. Bajo esta metodología, el incremento promedio del salario real para el periodo de 100 años es de 0.36%.

ii) Costo por el otorgamiento de pensiones mínimas

Es el costo que paga el Gobierno Federal por el otorgamiento de las pensiones mínimas garantizadas a los pensionados de invalidez y vida (costo fiscal), de acuerdo a lo establecido en el segundo párrafo del artículo 141 de la LSS¹⁵. El porcentaje del importe del costo fiscal se obtiene respecto a los montos constitutivos pagados en el periodo de 2008 a 2017, resultando que para invalidez el costo fiscal representa el 17.0% y para vida representa el 26.0% de los montos constitutivos¹⁶. En el caso del ramo de vida, durante el periodo de análisis, el porcentaje que paga el Gobierno Federal por el otorgamiento de pensiones garantizadas ha ido disminuyendo, por tal motivo, para la valuación actuarial se consideró el porcentaje de costo fiscal de 26% fijo hasta 2030 y a partir del año 2031 el porcentaje disminuye gradualmente hasta alcanzar en 2040 un factor de 20%, el cual se mantiene para el largo plazo.

I.3 Análisis de los resultados

A partir de la información de asegurados, salarios y de los supuestos demográficos y financieros definidos para el escenario base de la valuación actuarial, se obtienen las proyecciones para los periodos de 50 años y de 100 años¹⁷.

Para verificar la suficiencia financiera del SIV, lo que se hace es comparar la prima de ingreso¹⁸ con la prima media nivelada¹⁹ que se obtiene de la valuación actuarial. A continuación se presentan los resultados del **Escenario Base**.

I.3.1 Resultados de la proyección demográfica

En el cuadro 5 se presentan los principales resultados de la proyección demográfica para el escenario base, y que son:

- i) Evolución de los asegurados;
- ii) Número de nuevas pensiones por:
 - a) Viudez, orfandad y ascendencia, derivadas del fallecimiento de asegurados y/o pensionados por invalidez con carácter temporal; e,

¹⁵ Artículo 141: "En el caso de que la cuantía de la pensión sea inferior a la pensión garantizada, el Estado aportará la diferencia a fin de que el trabajador pueda adquirir una pensión vitalicia ..."

¹⁶ El porcentaje del costo fiscal se obtiene respecto a los montos constitutivos, el cual corresponde al promedio para el periodo 2008 a 2017.

¹⁷ Para el periodo de 100 años, la proyección financiera considera la extinción de las obligaciones de los asegurados que quedaron vigentes en el año 100. Esto con el fin de incluir en el pasivo total el costo de las prestaciones pendientes de otorgar a los asegurados que se estima estarán vigentes en ese año de proyección.

¹⁶ La prima de ingreso está establecida en los Artículos 146, 147 y 148 de la Ley del Seguro Social, el financiamiento del Seguro de Invalidez y Vida se integra de manera tripartita por las cuotas de los patrones, los trabajadores y el Gobierno Federal, y les corresponde cubrir 1.75%, 0.625% y 0.125% sobre el salario base de cotización, respectivamente.

¹⁹ La prima media nivelada es la prima constante que se requiere para recabar los ingresos por cuotas necesarios para cubrir los gastos durante el periodo de proyección y resulta de dividir el valor presente del gasto de cada rubro entre el valor presente del volumen de salarios. Esta prima permite identificar sí actuarialmente el seguro es financieramente viable o no.

- b) Invalidez temporal y definitiva en cada año de proyección.
- iii) A partir de los dos resultados anteriores se calcula la relación de pensionados por cada 1,000 asegurados.

Cuadro 5. Resumen de las Proyecciones Demográficas de la Valuación Actuarial del Seguro de Invalidez y Vida

Año de Proyección	Asegurados ^{1/}	Pensiones derivadas de fallecimiento ^{2/}	Pensionados por invalidez ^{3/}	Total de pensionados	Número de pensionados por cada 1000 asegurados
	(a)	(b)	(c)	(d)=(b)+(c)	(e)= (d/a)*1000
2019	20,354,781	16,499	19,881	36,380	1.79
2020	20,857,544	18,685	20,228	38,913	1.87
2021	21,399,840	20,730	20,903	41,633	1.95
2022	21,977,636	22,790	18,774	41,564	1.89
2023	22,571,032	24,983	20,014	44,997	1.99
2024	23,203,021	27,309	21,312	48,621	2.10
2025	23,843,620	29,739	22,687	52,425	2.20
2030	27,339,527	43,678	30,678	74,356	2.72
2040	35,152,121	91,450	51,412	142,862	4.06
2050	41,232,262	122,053	67,332	189,385	4.59
2060	45,554,703	142,987	77,402	220,390	4.84
2070	50,330,674	166,852	90,411	257,262	5.11
2080	55,607,807	185,798	95,799	281,597	5.06
2090	61,438,735	205,816	102,769	308,585	5.02
2100	67,881,628	234,801	116,525	351,325	5.18
2110	75,000,770	263,409	131,166	394,575	5.26
2118	81,230,479	284,886	140,407	425,293	5.24

¹ Estas pensiones consideran las pensiones de viudez, orfandad y ascendencia que se generan de la muerte de asegurados y pensionados por invalidez con carácter temporal. Fuente: Dirección de Finanzas, IMSS.

La relación de pensionados por cada 1,000 asegurados presenta una tendencia creciente hasta el año 2070. Después de dicho año se observan pocas variaciones en el indicador.

El comportamiento observado hasta antes del año 2070 se debe a que actualmente coexisten dos generaciones, los asegurados de la generación en transición y los asegurados de la generación actual bajo la LSS de 1997. Dado que la primera es una población cerrada, en la medida en que estos asegurados vayan saliendo de la vida activa y sean reemplazados por los asegurados con derecho únicamente a los beneficios bajo la Ley vigente, el número de pensionados esperados se estabilizará.

1.3.2 Resultados de la proyección financiera

En cuanto a la proyección financiera para la generación conjunta de asegurados, los principales resultados de obtenidos con los supuestos convenidos para el escenario base se muestran en el cuadro 6, el cual contiene lo siguiente:

Informe

- i) Volumen anual de salarios de los asegurados afiliados al seguro (columna a) 20.
- ii) Flujos de gasto anual por sumas aseguradas (columna b).
- iii) Flujos de gasto anual por pensiones de invalidez con carácter temporal (columna c).
- iv) Gasto administrativo²¹ (columna d).
- v) Prima de gasto anual expresada como porcentaje del volumen de salarios de cada año²² (columna f);
- vi) Valor presente a 50 y a 100 años²³ de proyección de cada rubro de gasto; y,
- vii) Prima media nivelada²⁴.

²⁰ El volumen de salarios en cada año proyección es la estimación de la masa de salarios pagada a los asegurados valuados en cada año. Con la determinación de los salarios en cada año de proyección, es posible calcular el monto de las pensiones, el costo de las rentas vitalicias (montos constitutivos), el de las sumas aseguradas y la estimación de los saldos acumulados en las cuentas individuales.

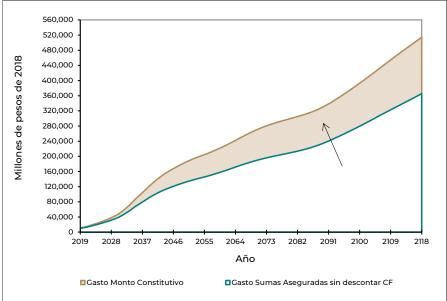
²¹ La estimación del gasto de administración considera la proporción del gasto del gasto que se asigna al SIV de los siguientes rubros: servicios de personal, consumos, mantenimiento, servicios generales, Régimen de Jubilaciones y Pensiones (RJP) a cargo del IMSS en su carácter de patrón, provisiones, y otros gastos.

 $^{^{22}\}mbox{Es}$ la relación del gasto anual entre el volumen anual de salarios.

²³Para el periodo de proyección de 100 años, el cálculo del valor presente considera la extinción de las obligaciones pendientes de cubrir a los asegurados vigentes en el año 100 de proyección

²⁴La prima media nivelada resulta de dividir el valor presente del gasto de cada rubro entre el valor presente del volumen de salarios.

Cuadro 6. Resumen de las Proyecciones Financieras de la Valuación Actuarial del Seguro de Invalidez y Vida al 31 de diciembre de 2018. Millones de pesos de 20187


			Gas	to		
Año	Volumen de	Sumas aseguradas	Pensiones por			Prima de
de proyección	ae salarios	netas de	invalidez con carácter	Administrativo	Total	gasto anua (%)
proyection.	(a)	costo fiscal ^{1/}	temporal (c)	(d)	(e)=(b)+(c)+(d)	(f)=(e/a)*100
2019	2,446,671	7,541	1,452	4,733	13,726	0.56
2020	2,539,585	8,714	1,986	4,890	15,590	0.61
2021	2,625,867	10,050	2,410	5,051	17,511	0.67
2022	2,717,040	11,926	2,776	5,216	19,918	0.73
2023	2,810,025	13,571	2,802	5,388	21,761	0.77
2024	2,905,560	15,316	2,887	5,562	23,766	0.82
2025	3,002,776	17,208	3,034	5,740	25,983	0.87
2030	3,518,807	28,495	4,039	6,696	39,231	1.11
2040	4,685,728	73,229	6,528	8,710	88,467	1.89
2050	5,820,233	99,972	9,033	10,417	119,423	2.05
2060	6,686,331	119,264	10,802	11,810	141,876	2.12
2070	7,638,627	141,131	13,158	13,534	167,823	2.20
2080	8,676,055	156,449	14,580	15,515	186,544	2.15
2090	9,934,006	177,379	15,973	18,023	211,375	2.13
2100	11,400,079	209,840	18,709	21,148	249,698	2.19
2110	13,018,424	245,687	21,873	24,667	292,226	2.24
2118	14,461,110	274,147	24,138	27,835	326,120	2.26
50 años						
Valor presente	112,606,818	1,491,008	152,425	207,475	1,850,907	
Prima media ni	ivelada	1.32	0.14	0.18	1.64	
100 años	***************************************					
Valor presente	182,069,453	2,842,745	277,000	327,040	3,446,785	
Prima media ni	ivelada	1.56	0.15	0.18	1.89	

 $^{^{}y}$ El gasto por sumas aseguradas tiene descontado el costo fiscal derivado del otorgamiento de las pensiones garantizadas. Fuente: Dirección de Finanzas, IMSS.

Otro de los elementos que incide en la estimación de los saldos acumulados de las cuentas individuales²⁵, ya que su determinación impacta en el gasto que el Instituto hace por sumas aseguradas, este concepto se define como la diferencia entre el monto constitutivo que se requiere para la contratación de la renta vitalicia y el saldo acumulado de las cuentas individuales. A partir de las proyecciones financieras se tiene que, a valor presente, las cuentas individuales financian en promedio el 27.5% de los montos constitutivos. El financiamiento que hacen las cuentas individuales a los montos constitutivos se ilustra en la gráfica 2.

²⁵ De acuerdo al Artículo 159, fracción I de la LSS se define como cuenta individual "aquella que se abrirá para cada asegurado en las Administradoras de Fondos para el Retiro, para que se depositen en la misma las cuotas obrero-patronales y estatal por concepto del seguro de retiro, cesantía en edad avanzada y vejez, así como los rendimientos. La cuenta individual se integrará por las subcuentas: de retiro, cesantía en edad avanzada y vejez; de vivienda y de aportaciones voluntarias..."

Gráfica 2. Financiamiento de los Montos Constitutivos por los Saldos Acumulados en las Cuentas Individuales

Fuente: Dirección de Finanzas, IMSS.

A partir de los resultados mostrados en el cuadro 6, se lleva a cabo el análisis de la situación financiera del SIV, el cual se elabora bajo dos perspectivas:

- Durante el periodo de proyección, mediante el análisis de la prima de gasto anual²⁶ respecto de la prima de ingreso; y,
- A la fecha de valuación, el cual se realiza a través del análisis de la prima media nivelada²⁷ que se presenta en el Balance Actuarial, misma que se compara con la prima de ingreso.

I.3.3 Análisis de la Situación Financiera

Como se comentó anteriormente, el análisis de la situación financiera del Seguro de Invalidez y Vida se realiza verificando si la prima estipulada en la LSS para este seguro es suficiente para financiar los gastos derivados de las prestaciones otorgadas por el mismo, incluyendo los gastos de administración.

Esto se hace examinando el comportamiento de la prima de gasto anual y el de la prima media nivelada a través balance actuarial.

• Análisis de la Prima de Gasto Anual

El análisis del comportamiento de la prima de gasto anual permite detectar los años en los que la prima de ingreso es inferior a la prima de gasto, los años en que ocurre este fenómeno implica que se tiene que hacer uso de la reserva financiera y actuarial.

²⁶ Es la relación del gasto anual entre el volumen anual de salarios.

²⁷ La prima media nivelada resulta de dividir el valor presente del gasto de cada rubro entre el valor presente del volumen de salarios.

El comparativo entre la prima de gasto anual y la prima de ingreso se muestra en la gráfica 3.

Gráfica 3. Comparativo entre la Prima de Gasto y la Prima de Ingreso Anual

Fuente: Dirección de Finanzas, IMSS.

En la gráfica anterior se puede observar que la prima de gasto pasa de 0.56% del salario base de cotización en 2018 a 2.26% en 2118, año en el que alcanza su punto máximo. Además durante todo el periodo de proyección la prima de gasto siempre es inferior a la prima de ingreso, por lo que se estima que no se requerirá hacer uso de las reservas financieras y actuariales.

I.3.3.1 Análisis del Balance Actuarial

El balance actuarial es otro instrumento que permite comprobar la situación financiera del SIV a la fecha de valuación. En él se muestran los activos y pasivos del seguro, así como la prima media nivelada que resulta de dividir el valor presente de cada uno de los rubros respecto al valor presente del volumen de salarios.

En el balance actuarial para el periodo de 100 años al 31 de diciembre de 2018 (cuadro 7), se determina si el activo formado por el saldo de la reserva financiera y actuarial al año base de valuación más el valor presente de los ingresos por cuotas futuros, es suficiente para cubrir el valor presente del pasivo que se deriva por el pago de:

- i) Pensiones temporales en curso de pago y futuras.
- ii) Sumas aseguradas.
- iii) Gasto de administración²⁸.

²⁸ La incorporación de los gastos de administración dentro del balance actuarial se realiza a fin de que se contemplen todos los gastos que debe hacer frente este seguro, y así comparar adecuadamente los gastos y los ingresos.

Cuadro 7. Balance Actuarial al 31 de Diciembre de 2018 del Seguro de Invalidez y Vida. Millones de pesos de 2018^{1/}

Activo			Pasivo)	
		%VPSF ^{2/}			%VPSF 2/
Saldo de la Reserva al 31 de diciembre de 2018 (1) 3/	20,879	0.01%	Sumas aseguradas ^{4/} (6)	2,842,745	1.56%
Aportaciones futuras de	4.551.736	2.50%	Pensiones temporales (7)	277.000	0.15%
ingresos por cuotas (2) Subtotal (3)=(1)+(2)	4,572,615	2.51%	Subtotal (8)=(6)+(7)	3,119,745	1.71%
(Superávit) / Déficit (4)=(10)-(3)	(1,125,830)	-0.62%	Gasto administrativo (9)	327,040	0.18%
Total (5)=(3)+(4)	3,446,785	1.89%	Total ^{7/} (10)=(8)+(9)	3,446,785	1.89%

¹ Los totales y los subtotales pueden no coincidir por cuestiones de redondeo.

Fuente: Dirección de Finanzas. IMSS.

Del balance actuarial se observa que el valor presente de los ingresos por cuotas es suficiente para cubrir el valor presente del gasto por las prestaciones en dinero, así como los gastos de administración, y además se tiene un superávit actuarial por 1,125,830 millones de pesos de 2018 que equivale a 0.62% del valor presente de los salarios futuros.

Cuando se compara la prima media nivelada del gasto total de 1.89% de los salarios, con la prima de ingreso del Seguro de Invalidez y Vida de 2.5%, se puede advertir que la prima estipulada en la LSS es suficiente en el largo plazo.

No obstante, hay que considerar que dentro de los gastos valuados no se contemplan los gastos derivados de las prestaciones en dinero por gastos de funeral y subsidios, ni los gastos derivados del otorgamiento de la atención médica a los pensionados y sus beneficiarios.

1.3.4 Análisis de los resultados de los escenarios de sensibilización

Como se mencionó en la sección I.2.3.2 de este informe, la variación de alguno de los supuestos utilizados en el Escenario Base de la valuación actuarial puede cambiar la situación financiera del SIV. Por lo que se definen escenarios de sensibilidad, mismos que están enfocados a medir las variaciones del gasto si algún supuesto se modifica.

Los dos escenarios de sensibilidad calculados son:

i) escenario de riesgo 1 (moderado), cuyo propósito es medir el impacto que se tendría en el gasto por pensiones al suponer un cambio en la tasa de interés de

^{2/} Valor presente de los salarios futuros.

^{3/} Reserva financiera y actuarial del Seguro de Invalidez y Vida al 31 de diciembre de 2018.

^{4/} El gasto por sumas aseguradas corresponde al valor presente de los flujos anuales de gasto y tiene descontado el valor presente de las aportaciones que corresponden al Gobierno Federal por pensiones garantizadas.

^{5/} El gasto por pensiones temporales corresponde al valor presente de los flujos anuales de gasto.

- largo plazo para el cálculo de los montos constitutivos, la cual pasaría de 3% a 2.5%²⁹: v.
- ii) escenario de riesgo 2 (catastrófico), supone que la tasa de interés de largo plazo para el cálculo de los montos constitutivos para el largo plazo es igual a 2%, además considera que ningún asegurado cuenta con saldo en la Subcuenta de Vivienda al momento de tener derecho a una pensión por invalidez o al momento del fallecimiento para el financiamiento de las pensiones derivadas.

Los resultados de los escenarios de riesgo 1 y 2 se resumen en el cuadro 8, en donde se muestran los pasivos a 50 y a 100 años de proyección por concepto de sumas aseguradas, pensiones temporales y gasto administrativo, así como las primas medias niveladas correspondientes a cada periodo.

Cuadro 8. Resultados de los Escenarios de Riesgo de la Valuación Actuarial del Seguro de Invalidez y Vida. Millones de pesos de 2018

Gastos _	Escenari	o 50 años de pro	yección	Escenario 100 años de proyección ¹					
Custos	Base	Riesgo 1	Riesgo 2	Base	Base Riesgo 1				
Pensiones ^{2/}	1,643,432	1,733,868	1,982,409	3,119,745	3,337,333	3,934,880			
Costo de administración	207,475	207,475	207,475	327,040	327,040	327,040			
Total del gasto (a)	1,850,907	1,941,343	2,189,884	3,446,785	3,664,373	4,261,920			
Volumen de salarios (b)	112,606,818	112,606,818	112,606,818	182,069,453	182,069,453	182,069,453			
Prima media nivelada ^{3/} (a)/(b) *100	1.64	1.72	1.94	1.89	2.01	2.34			

VEstos resultados contemplan la proyección hasta la extinción de las obligaciones por pensiones de los asegurados que se encuentran vigentes en el año 100 de proyección.

Fuente: Dirección de Finanzas, IMSS.

De los resultados del cuadro anterior se desprende lo siguiente:

a) Escenario de riesgo 1

La disminución de la tasa para el cálculo de las anualidades en 50 puntos base se traduce en un incremento en el gasto por pensiones de 5.5% para el periodo de 50 años y de 7.0% para el periodo de 100 años, por lo que se alcanzan primas medias niveladas por concepto de pensiones de 1.54% y de 1.83% para los periodos de proyección de 50 y de 100 años respectivamente.

En cuanto a la prima de gasto total, ésta asciende a 1.72% para el periodo de 50 años (frente a 1.64% en el Escenario Base) y a 2.01% para el periodo de 100 años (frente a 1.89% en el Escenario Base).

b) Escenario de riesgo 2

La modificación en este escenario de la tasa de interés para el cálculo de los montos constitutivos y el considerar nulas las aportaciones a la subcuenta de

²Incluye el gasto por sumas aseguradas netas de costo fiscal, el gasto anual de las pensiones temporales y el gasto generado de laudos por pensiones.

³/Es la prima constante en el periodo de proyección que permite captar los recursos suficientes para hacer frente a los gastos del Seguro de Invalidez y Vida.

²⁹ Para el escenario base en el periodo de 2017-2030 se emplea una tasa para el cálculo de los montos constitutivos que va disminuyendo de forma gradual de 3.7% a 3% y para el periodo de 2031 en adelante se utiliza una tasa constante de 3%. Para los escenarios de riesgo 1 y de riesgo 2 se supone que la tasa de 3% disminuye de forma gradual del año 2017 y hasta el año 2036 hasta llegar a 2.5% y se mantiene continua hasta el año 100 de proyección.

Informe

Vivienda, se traducen en un incremento del pasivo por pensiones de 20.6% para el periodo de 50 años y de 26.1% para el de 100 años, respecto al gasto obtenido en el escenario base, se alcanzan primas medias niveladas por concepto de pensiones equivalentes a 1.76% y 2.16% para los periodos de 50 y de 100 años respectivamente.

Para el periodo de 50 años la prima de gasto total pasa de 1.64% en el escenario base a 1.94% para este escenario y para el periodo de 100 años la prima pasa de 1.89% en el escenario base a 2.34% en este escenario.

Los resultados obtenidos para los escenarios de riesgo 1 y riesgo 2 indican que la prima ingreso de 2.50% es suficiente para hacer frente a los gastos del SIV por prestaciones económicas y gastos administrativos.

I.4 Resumen y conclusiones

El modelo de la valuación actuarial considera los cambios generados en los niveles de empleo, salarios, el ritmo de crecimiento y el perfil de la población asegurada y pensionada del IMSS a través de los supuestos adoptados. Estos cambios se deben a la dirección que ha tomado el entorno económico-social del país, así como a la modificación del comportamiento que han tenido algunas variables demográficas, como son el aumento en la esperanza de vida y la disminución paulatina de las tasas de natalidad.

A pesar de que los resultados de la valuación actuarial se calculan para los periodos de 50 años y 100 años de proyección, para efectos del análisis de la situación financiera del SIV, únicamente se hace referencia a los resultados para el periodo de 100 años.

Para realizar el análisis de la situación financiera del SIV se considera un escenario base y dos escenarios de riesgo, los cuales se denominan escenario de riesgo 1 (moderado) y escenario de riesgo 2 (catastrófico). El propósito de estos escenarios es medir el impacto financiero que tiene en los resultados la modificación de la tasa de interés para el cálculo de los montos constitutivos y el porcentaje de asegurados que aportan a la Subcuenta de Vivienda³⁰.

En el cuadro 9 se muestran los principales resultados de la proyección financiera, y a fin de poder comparar los resultados entre los diferentes escenarios se calcula la prima media nivelada sin considerar la reserva Financiera y Actuarial a diciembre de 2018.

³⁰ En el cuadro 4 de este documento, se muestran las hipótesis para el escenario base y para los escenarios de riesgo.

Cuadro 9. Valor Presente de Obligaciones Totales del SIV de los Diferentes Escenarios Valuados. Millones de pesos de 2018

	`	Valor Presente		Prima media nivelada				
Escenarios	Volumen de salarios	Gasto por pensiones ^{1/}	Gasto total ^{2/}	Pensiones	Gasto total			
	(a)	(b)	(c)	(d)= (b)/(a)	(e)= (c)/(a)			
Escenario base	182,069,453	3,119,745	3,446,785	1.71	1.89			
Escenario riesgo 1	182,069,453	3,337,333	3,664,373	1.83	2.01			
Escenario riesgo 2	182,069,453	3,934,880	4,261,920	2.16	2.34			

¹ El valor presente del gasto por pensiones incluye el que corresponde a las prestaciones económicas de largo plazo (sumas aseguradas por pensiones definitivas y flujo de gasto anual por pensiones temporales).

Nota: Las primas se expresan como porcentaje del salario base de cotización.

Fuente: Dirección de Finanzas, IMSS

De los resultados mostrados en el cuadro anterior se deriva lo siguiente:

- En el escenario de riesgo 1, la disminución de la tasa para el cálculo de las anualidades se expresa en un aumento del gasto por pensiones y de su prima media nivelada en 7.0% respecto al Escenario Base. En cuanto al gasto total, la prima media nivelada aumenta en 6.3% respecto a la del Escenario Base.
- Para el escenario de riesgo 2, la modificación de los supuestos se traduce en un aumento del gasto por pensiones y de su prima media nivelada de 26.1% respecto al estimado para el Escenario Base. Mientras que para el gasto total del SIV y su prima media nivelada el incremento es de 23.6% respecto a la del Escenario Base.

Por lo que, considerando los resultados del Escenario Base y de los Escenarios de Riesgo, se corrobora que la prima de ingreso del Seguro de Invalidez y Vida de 2.5%, es suficiente para cubrir en el largo plazo los gastos que se generen por el otorgamiento de las prestaciones que establece la LSS para este seguro a la población derechohabiente que cotiza al mismo.

Por último, el Gobierno Federal y los saldos acumulados en las cuentas individuales³¹ son en la mayoría de los casos de los asegurados de la generación en transición (afiliados hasta el 30 de junio de 1997) la fuente de financiamiento de las pensiones que se otorgan bajo la LSS de 1973 y no los ingresos por cuotas que recaba el

² El valor presente del gasto total incluye el que corresponde a las prestaciones económicas de largo plazo (sumas aseguradas por pensiones definitivas y flujo de gasto anual por pensiones temporales) y gastos de administración.

³¹ La LSS en su artículo Duodécimo transitorio de la reforma a la LSS del 21 de diciembre de 1995 establece que: "Estarán a cargo del Gobierno Federal las pensiones que se encuentren en curso de pago, así como las prestaciones o pensiones de aquellos sujetos que se encuentren en período de conservación de derechos y las pensiones que se otorguen a los asegurados que opten por el esquema establecido por la Ley que se deroga."

Por otra parte la Artículo Noveno transitorio de la Ley de los Sistemas de Ahorro para el Retiro del 24 de diciembre de 2002 establece que:

[&]quot;Los trabajadores que opten por pensionarse conforme al régimen establecido en la Ley del Seguro Social vigente hasta el 30 de junio de 1997, tendrán el derecho a retirar en una sola exhibición los recursos que se hayan acumulado hasta esa fecha en las subcuentas del seguro de retiro y del Fondo Nacional de la Vivienda, así como los recursos correspondientes al ramo de retiro que se hayan acumulado en la subcuenta del seguro de retiro, cesantía en edad avanzada y vejez, vigente a partir del 1o. de julio de 1997, incluyendo los rendimientos que se hayan generado por dichos conceptos.

Igual derecho tendrán los beneficiarios que elijan acogerse a los beneficios de pensiones establecidos en la Ley del Seguro Social que estuvo vigente hasta el 30 de junio de 1997.

Los restantes recursos acumulados en la subcuenta del seguro de retiro, cesantía en edad avanzada y vejez, previsto en la Ley del Seguro Social vigente a partir del 1o. de julio de 1997, deberán ser entregados por las administradoras de fondos para el retiro al Gobierno Federal."

Informe

Instituto para el financiamiento de las pensiones que se otorgan bajo la LSS de 1997. Esta situación genera un excedente de recursos financieros en este seguro, por lo que a medida que la generación en transición se vaya extinguiendo dicho excedente también se reducirá.

II Bases demográficas

II.1 Número de asegurados y modalidades de aseguramiento que se consideran en la valuación actuarial del Seguro de Invalidez y Vida

Modalidad	Concepto	Asegurados
10	Ordinario urbano ^{1/}	18,989,096
13	Trabajadores asalariados permanentes del campo	394,268
14	Trabajadores estacionales del campo cañero	40,713
17	Reversión de cuotas por subrogación de servicios	79,165
30	Productores de caña de azúcar	94,840
34	Trabajadores domésticos	3,658
35	Patrones personas físicas con trabajadores a su servicio	5,939
40	Continuación voluntaria en el régimen obligatorio	166,261
42	Trabajadores al servicio de los gobiernos de los estados	19,001
43	Incorporación voluntaria del campo al régimen obligatorio	19,971
44	Trabajadores independientes	22,534
Total de as	egurados	19,835,446

Y Están integrados por Eventuales de la Construcción y Ajenos a la Industria de la Construcción, Trabajadores Estacionales del Campo general y Estacionales del Campo Cañero. Fuente: IMSS

II.2 Generación actual de trabajadores asegurados el Seguro de Invalidez y Vida por años reconocidos y edades alcanzadas

(Hombres y Mujeres)

t/x	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
0	877	10,166	18,693	64,547	59,423	41,133	35,718	34,332	32,952	29,103	24,564	20,892	17,481	14,848	12,571	11,048
1 2	0	3,417 0	12,719 6,307	50,600	88,722 122,047	91,668 160,414	74,240 157,616	58,565 128,104	51,494 107,560	46,985 94,307	39,874 79,522	32,283 62,339	24,031 44,622	18,717 31,712	14,603 22,339	12,05 16,77
3	0	0	0,307	16,947	29,372	72,439	102,137		107,070	81,878	65,830	59,673	50,184	38,250	26,699	19,24
4	0	0	0	0,547	9,216	68,840	45,263	89,251	123,885	115,405	88,197	70,052	61,593	51,658	37,855	26,96
5	0	0	0	0	9,210	52,912	26,794	43,748	89,281	125,699	117,812	92,359	69,935	59,818	47,732	35,97
6	0	0	0	0	0	0	7,760	21,487	41,997	86,840	120,389	117,075	89,161	69,190	55,727	45,31
7	0	0	0	0	0	0	7,700	6,276	21,169	39,725	78,959		104,249	84,002	63,493	51,50
8	0	0	0	0	0	0	0	0,270	6,929	16,963	31,732	68,436	94,065	94,931	77,072	59,40
9	0	0	0	0	0	0	0	0	0,525	3,969	11,854	31,178	64,050	90,981	91,805	77,53
10	0	0	0	0	0	0	0	0	0	0,505	2,654	14,441	36,702	68,151	90,363	93,22
11	0	0	0	0	0	0	0	0	0	0	2,031	2,857	14,950	36,122	63,079	86,15
12	0	0	0	0	0	0	0	0	0	0	0	2,037	2,612	12,499	30,389	57,25
13	0	0	0	0	0	0	0	0	0	0	0	0	0	1,726	9,786	26,34
14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1,509	8,68
15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1,55
16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1,50
17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
19	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
21	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
22	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
23	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
26	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
27	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ţ
28	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ţ
29	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(
30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(
31	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(
32	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(
33	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(
34	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(
35	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(
36	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
37	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
38	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
39	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
40	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
41	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
42	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
43	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
44	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(
46	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
47	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
48	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
49	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	877	13,583							582,337							

1/5

Nota: La matriz de asegurados se integra a partir de la información oficial, y la antigüedad se construye a partir de la aplicación de los vectores de densidad de cotización por edad.
Fuente: IMSS

														(Homl	ores y M	ujeres)
t/x	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46
0	9,889	8,926	8,210	7,564	6,928	6,371	5,850	5,711	5,387	5,142	4,970	4,835	4,481	4,294	4,085	3,855
1	10,196	9,230	8,133	7,221	6,623	5,900	5,305	5,079	4,814	4,631	4,453	4,138	3,904	3,763	3,617	3,317
2	13,154	11,209	9,630	8,353	7,234	6,520	5,805	5,401	5,025	4,784	4,707	4,333	4,094	3,854	3,562	3,406
3	14,478	11,612	9,464	8,043	6,720	5,839	5,020	4,594	4,321	4,015	4,011	3,708	3,408	3,238	2,964	2,846
4	19,422	14,549	11,329	9,313	7,611	6,241	5,236	4,720	4,412	4,082	3,905	3,647	3,357	3,166	2,918	2,693
5	26,121	19,108	13,927	10,845	8,576	6,660	5,441	4,852	4,408	4,108	3,815	3,482	3,248	3,077	2,764	2,558
6	34,520	25,676	18,274	13,602	10,265	7,584	5,950	5,101	4,625	4,126	3,841	3,530	3,294	3,013	2,773	2,610
7	41,947	33,153	24,348	17,837	12,898	9,174	6,778	5,771	4,926	4,371	4,036	3,681	3,378	3,076	2,820	2,690
8	48,233	40,425	31,436	23,926	17,190	11,696	8,237	6,672	5,557	4,894	4,386	3,838	3,512	3,283	2,937	2,725
9	60,179	49,204	40,041	32,169	24,059	16,127	11,224	8,619	6,910	5,824	5,115	4,335	3,919	3,628	3,289	3,000
10	78,759	62,494	49,983	41,048	31,808	22,101	15,428	11,492	8,710	7,099	6,127	5,117	4,550	4,204	3,769	3,464
11	88,410	76,537	59,979	48,106	38,402	27,683	19,940	14,875	10,842	8,408	7,056	5,782	4,944	4,543	4,026	3,670
12	78,450	81,463	70,316	55,809	44,211	32,872	24,518	18,802	13,730	10,393	8,207	6,481	5,465	4,904	4,210	3,824
13	52,040	69,168	73,035	64,306	51,461	38,352	28,834	22,811	17,112	12,749	9,909	7,533	6,149	5,367	4,509	3,984
14	26,850	45,030	63,564	69,181	62,566	48,320	35,809	28,419	21,989	16,784	13,041	9,739	7,706	6,509	5,297	4,57
15	11,063	21,792	43,878	63,341	69,945	61,800	47,141	37,206	28,788	22,421	17,732	13,358	10,306	8,423	6,750	5,642
16	3,076	7,614	23,230	46,915	66,176	71,788	61,065	50,187	38,792	30,192	24,214	18,412	14,145	11,340	8,818	7,24
17	0,070	1,296	8,651	26,030	48,908	69,774	69,956	63,889	51,405	40,443	32,345	24,727	19,198	15,279	11,688	9,297
18	0	0	1,638	9,587	26,212	53,745	66,573	70,401	62,228	51,417	41,648	31,520	24,715	19,708	14,930	11,573
19	0	0	0	1,442	8,689	31,173	50,502	64,002	64,825	59,237	50,727	38,886	30,644	24,319	18,557	14,112
20	0	0	0	0	1,636	13,334	29,390	46,426	55,957	58,967	56,637	46,265	37,408	29,649	22,683	17,26
21	0	0	0	0	0,050	4,459	12,996	25,875	38,758	49,485	56,135	52,130	45,273	36,855	28,463	21,830
22	0	0	0	0	0	0	3,672	10,476	20,723	33,682	48,038	53,533	52,910	46,420	37,330	29,156
23	0	0	0	0	0	0	0	3,464	8,744	18,672	34,507	47,710	55,512	55,072	48,156	39,540
24	0	0	0	0	0	0	0	0,404	2,808	8,011	19,582	34,486	49,041	56,984	56,179	50,337
26	0	0	0	0	0	0	0	0	0	0	2,293	7,458	17,863	31,971	44,564	53,102
27	0	0	0	0	0	0	0	0	0	0	0	1,738	6,655	15,700	28,017	41,001
28	0	0	0	0	0	0	0	0	0	0	0	0	1,540	5,602	13,362	25,359
29	0	0	0	0	0	0	0	0	0	0	0	0	0	1,117	4,131	11,054
30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	988	3,613
31	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1,120
32	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
33	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
34	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
35	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
36	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
37	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
38	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
39	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
40	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	С
41	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
42	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	С
43	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	С
44	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
46	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
47	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
48	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
49	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C

Total 616,787 588,486 569,066 564,638 558,118 557,513 530,670 524,845 495,796 476,301 479,382 462,932 464,727 466,470 453,553 446,690 Fuente: IMSS.

(Hom	bres y	Mujeres)
------	--------	---------	---

t/x	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64
0	3,682	3,184	3,073	2,813	2,695	2,484	2,350	2,229	1,953	1,798	1,680	1,492	1,323	1,142	1,012	808	733	614
1	3,086	2,735	2,618	2,404	2,346	2,055	1,982	1,813	1,636	1,492	1,405	1,191	1,060	990	835	672	626	560
2	3,218	2,778	2,544	2,369	2,213	2,027	1,891	1,724	1,512	1,388	1,264	1,192	1,073	925	809	665	579	475
3	2,537	2,208	2,153	1,999	1,820	1,693	1,549	1,413	1,264	1,158	1,029	964	835	759	668	535	496	424
4	2,573	2,221	2,106	1,938	1,778	1,590	1,434	1,344	1,201	1,113	964	896	826	699	598	520	426	426
5	2,398	2,133	2,027	1,753	1,583	1,412	1,300	1,178	1,057	921	853	750	706	605	549	463	394	352
6	2,340	2,125	1,977	1,765	1,561	1,390	1,237	1,120	1,045	907	820	727	705	591	502	427	376	313
7	2,369	2,167	2,013	1,790	1,568	1,450	1,279	1,146	1,036	920	819	794	682	591	494	421	375	321
8	2,511	2,214	2,095	1,800	1,651	1,512	1,331	1,197	1,044	945	832	806	702	584	513	422	375	324
9	2,713	2,398	2,295	1,992	1,841	1,625	1,485	1,314	1,146	1,064	908	878	780	649	583	458	412	347
10	3,080	2,789	2,609	2,311	2,121	1,900	1,738	1,563	1,372	1,207	1,083	1,032	907	774	657	551	482	398
11	3,320	2,967	2,729	2,475	2,228	2,030	1,860	1,688	1,451	1,266	1,186	1,072	956	802	672	587	495	425
12	3,408	3,060	2,807	2,549	2,261	2,097	1,846	1,697	1,511	1,298	1,181	1,058	973	800	688	573	507	424
13	3,492	3,113	2,888	2,584	2,321	2,146	1,851	1,752	1,538	1,315	1,176	1,089	993	808	714	591	519	446
14	3,918	3,462	3,157	2,811	2,527	2,294	2,025	1,864	1,658	1,446	1,265	1,173	1,083	869	761	636	570	468
15	4,717	4,073	3,646	3,214	2,910	2,620	2,304	2,123	1,874	1,649	1,449	1,325	1,233	987	854	725	636	527
16	5,856	4,975	4,353	3,812	3,416	3,069	2,693	2,437	2,192	1,927	1,680	1,551	1,419	1,141	985	845	740	605
17	7,246	6,054	5,194	4,446	3,913	3,526	3,070	2,748	2,498	2,215	1,923	1,788	1,571	1,277	1,120	939	823	664
18	8,781	7,131	5,927	5,009	4,318	3,835	3,356	3,015	2,682	2,417	2,074	1,987	1,727	1,361	1,197	1,009	852	695
19	10,548	8,323	6,654	5,463	4,546	3,994	3,480	3,126	2,748	2,471	2,128	2,036	1,794	1,399	1,191	980	819	668
20	12,744	9,804	7,600	6,044	4,862	4,097	3,548	3,153	2,737	2,449	2,121	2,021	1,800	1,326	1,068	857	700	574
21	16,021	12,313	9,308	7,150	5,509	4,468	3,723	3,251	2,785	2,479	2,142	2,026	1,811	1,266	938	715	565	445
22	21,530	16,578	12,626	9,496	7,079	5,632	4,491	3,801	3,182	2,763	2,369	2,240	1,983	1,335	971	714	572	444
23 24	29,563 39,225	23,038 31,167	17,669 24,244	13,406 18,627	9,824 13,656	7,676 10,573	5,948 8,051	4,913 6,473	4,014 5,140	3,367 4,184	2,874 3,473	2,686 3,221	2,357 2,810	1,540 1,820	1,136 1,324	831 980	670 779	525 637
26	50,312	45,571	37,951	30,289	22,944	18,001	13,576	10,556	8,008	6,218	4,881	4,272	3,584	2,293	1,630	1,196	943	732
27	45,110	46,376	41,950	35,494	27,768	22,239	16,950	13,159	9,976	7,634	5,879	5,009	4,093	2,576	1,769	1,280	983	749
28	33,224	40,008	41,205	38,277	31,902	26,443	20,514	16,205	12,473	9,579	7,264	6,023	4,812	2,878	1,917	1,355	1,021	761
29	18,468	27,122	33,360	35,936	33,205	29,438	23,838	19,533	15,488	12,224	9,244	7,645	6,040	3,498	2,257	1,552	1,129	855
30	7,761	14,757	22,612	29,384	31,347	31,125	27,397	23,952	20,141	16,758	13,143	11,190	8,927	5,106	3,272	2,188	1,535	1,164
31 32	2,585 391	6,161 1,521	12,283 4,818	19,998 10,558	25,529 16,811	29,368 23,408	29,342 27,476	28,378 30,107	25,683 29,879	22,754 28,326	18,794 24,804	16,703 23,245	13,790 20,045	8,067 12,150	5,179 7,969	3,480 5,456	2,440 3,918	1,818 2,933
33	0	336	1,372	4,268	8,773	15,227	21,398	26,871	29,435	30,143	28,051	27,934	25,309	16,068	10,951	7,728	5,718	2,933 4,355
34	0	0	336	1,157	3,271	7,422	12,794	18,663	22,829	25,508	25,586	27,334	26,275	17,701	12,715	9,358	7,209	5,625
35	0	0	0	269	890	2,663	5,860	9,942	13,643	16,828	18,402	21,163	21,923	15,960	12,713	9,536	7,702	6,255
36	0	0	0	0	90	488	1,555	3,344	5,498	7,853	9,679	12,402	14,217	11,429	9,578	7,967	6,856	5,881
37	0	0	0	0	0	43	234	685	1,432	2,519	3,688	5,527	7,250	6,627	6,203	5,596	5,210	4,767
38	0	0	0	0	0	0	13	75	223	530	992	1,844	2,889	3,092	3,300	3,275	3,338	3,293
39	0	0	0	0	0	0	0	4	20	69	185	456	891	1,144	1,420	1,570	1,774	1,911
40	0	0	0	0	0	0	0	0	0	4	24	82	208	327	483	605	767	918
41	0	0	0	0	0	0	0	0	0	0	1	10	34	71	127	184	267	361
42	0	0	0	0	0	0	0	0	0	0	0	0	4	11	25	43	73	116
43	0	0	0	0	0	0	0	0	0	0	0	0	0	1	3	7	15	29
44	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	3	6
45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
46	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
47	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
48	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
49	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total		384,369	361,525	340,114		297.087	277,349	267.871		236,204					103,396	80,389	66,301	55,336
		,005	,0_0	, +	,/	,007	,0.5	,	,	,	,	,0_0	,000	0,.11	,050	,000		,000

Fuente: IMSS. 3/5

															(1	Hombre	es y Mu	jeres)
t/x	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82
0	479	420	368	359	288	226	202	159	147	110	101	84	75	75	55	44	27	29
1	405	381	313	263	231	171	178	149	134	124	75	81	55	50	54	25	30	25
2	410	352	319	232	248	191	175	123	93	88	69	65	52	58	41	33	30	21
3	339	284	266	214	179	160	148	118	100	79	62	66	43	44	35	31	33	24
4	325	268	232	206	176	164	142	106	90	79	63	57	51	56	32	23	22	24
5	264	248	205	169	156	126	108	84	73	66	58	55	43	42	28	26	15	17
6	281	244	205	170	147	115	110	93	82	70	52	55	43	42	32	24	23	16
7	293	257	181	185	151	124	103	82	76	66	53	47	38	44	34	25	17	17
8	272	247	189	186	154	133	110	82	71	75	57	49	34	35	35	26	16	15
9	292	245	213	196	160	139	125	83	76	72	71	54	41	48	33	26	19	20
10	356	283	230	220	171	152	136	101	84	85	71	60	50	45	33	29	21	20
11	364	314	240	228	159	158	133	107	89	86	75	64	47	46	33	30	24	22
12	329	295	253	232	170	160	135	118	97	86	62	61	40	54	35	30	22	20
13	341	294	243	227	176	151	148	122	104	83	53	60	45	51	37	32	25	24
14	391	305	257	236	178	159	157	120	112	81	65	63	46	54	39	33	24	26
15	443	343	293	261	206	168	162	136	115	86	77	75	51	58	42	38	26	24
16	488	404	334	289	241	193	174	151	125	99	92	77	58	64	41	36	29	26
17	530	447	365	314	253	218	190	152	128	107	102	79	65	59	45	38	34	26
18	561	466	371	330	274	237	203	159	142	122	105	92	75	67	57	46	28	26
19	546	442	349	311	265	220	194	150	138	117	107	97	80	73	53	45	31	29
20	459	362	270	250	200	172	146	122	105	90	75	75	56	55	43	36	28	25
21	327	252	183	159	118	97	85	71	58	49	32	33	22	26	24	17	15	13
22	313	227	169	139	96	76	73	54	47	38	25	24	17	18	11	10	8	9
23	362	252	196	159	109	82	83	55	57	40	29	31	22	22	13	11	8	9
24	412	300	221	183	128	93	91	64	64	44	34	35	26	25	15	11	9	8
26	463	341	242	206	148	113	90	77	57	50	40	30	23	24	16	11	14	10
27	482	340	248	203	146	108	87	74	50	48	35	24	20	28	12	13	13	8
28	465	343	244	202	137	108	84	68	49	42	31	22	19	25	11	11	10	7
29	508	375	247	201	143	112	88	68	53	39	31	22	19	23	12	11	8	6
30	684	489	317	257	179	142	109	78	65	48	36	28	22	23	14	11	10	8
31	1,057	752	484	386	260	201	157	110	90	70	50	42	31	26	18	16	12	12
32	1,721	1,205	790	613	419	314	244	172	137	109	80	67	48	39	28	25	17	16
33	2,632	1,203	1,235	950	662	491	381	275	216	170	128	106	74	65	44	38	26	23
34	3,544	2,502	1,709	1,324	944	701	549	405	322	248	192	158	107	100	66	54	38	33
35	4,114	2,971	2,081	1,651	1,191	902	716	535	434	330	258	211	141	132	91	70	54	45
36	4,095	3,064	2,231	1,817	1,342	1,040	848	642	530	402	315	259	173	161	107	85	67	51
37	3,546	2,766	2,231	1,791	1,342	1,040	918	707	588	452	361	296	200	183	123	103	77	62
38	2,643	2,786	1,756	1,548	1,213	997	858	676	569	436	347	301	200	187	131	103	86	64
38 39	1,670	2,184 1,478	1,756	1,348	935	997 791	858 697	560	569 476	436 370	293	258	176	165	109	85	71	55
40	884	845	764	735	935 614	533	480	390	337	262	293	188	130	118	81	67	52	33 42
	388	404									125	113	79			38	32	25
41 42			391 168	395 177	339 157	302	276 132	227 111	199 97	156 77	60	113 57	79 39	72 36	49 25	38 19	32 17	
42 43	141 41	161 53	59	66	59	142 55	132 52	43	39	30	24	22	39 16	36 14	25 10	19	7	13 5
43 44	9	53 14	59 16	19	18	55 17	52 16	43 13	39 12	30 9	24 8	7	16 5	5	3	2	2	1
	1	3	4				4						1	1	1	1	0	
45				4	4	4	4	4	3	2	2	2	0		0		0	0
46 47	0	0	0	1	1	1		0	0	0	0	0	0	0	0	0	0	
47	0						0			0	0			0				0
48	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
49	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Fuente: IMSS. 4/5

5,441

4,332

3,788

2,732

2,661

1,868

1,506

1,188

1,009

12,155 10,390 8,070 6,794

39,115 30,399 23,052 19,619 15,049

Total

																			Mujeres)
t/x	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100	Total
0	17	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	563,178
1	18	31	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	742,596
2	16	14	29	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1,239,358
3	22 23	16	13 8	41	7	0 7	0	0	0	0	0	0	0	0	0	0	0	0	908,768
4		13 9	8	6 2	40 2	34	8	1	0	0	0	0	0	0	0	0	0	0	919,645 907,360
5 6	20 13	10	12	7	5	6	29	5	2	0	0	0	0	0	0	0	0	0	825,544
7	16	14	10	6	10	4	29	5 17	8	1	0	0	0	0	0	0	0	0	763,836
8	12	11	8	5	9	5	1	2	23	6	0	0	0	0	0	0	0	0	691,207
9	16	13	10	8	11	5	3	3	5	18	2	2	0	0	0	0	0	0	673,906
10	18	14	10	8	11	8	5	3	2	3	6	6	2	0	0	0	0	0	690,503
11	17	13	8	6	11	8	7	6	3	4	4	13	6	3	0	0	0	0	656,899
12	22	14	10	8	9	6	5	4	3	3	2	1	10	9	1	0	0	0	597,455
13	22	16	10	13	11	8	7	4	2	2	3	2	2	18	4	1	0	0	536,855
14	22	19	14	18	9	9	8	4	2	3	4	4	2	1	7	4	2	0	510,038
15	21	19	16	12	11	9	11	5	3	5	9	2	1	0	1	9	5	0	510,750
16	25	22	15	13	10	13	10	4	4	4	4	1	2	0	i	0	6	0	529,956
17	22	22	14	8	10	13	5	5	4	3	4	2	1	0	0	1	0	0	547,167
18	23	22	16	9	11	12	6	4	4	3	3	3	2	0	0	1	1	0	546,749
19	27	23	16	10	10	12	5	4	3	3	3	3	3	1	0	1	0	0	522,854
20	22	18	12	8	10	14	4	4	4	2	3	2	3	0	2	0	0	0	485,795
21	11	10	7	4	5	9	2	1	3	1	2	9	0	0	0	0	0	0	450,819
22	8	7	3	2	3	2	2	2	3	2	1	2	0	0	0	1	0	0	435,138
23	8	7	2	2	4	6	2	6	3	2	2	0	5	0	0	0	0	0	445,003
24	9	7	3	3	9	3	2	2	2	4	4	1	1	0	0	1	0	0	455,626
26	10	6	5	5	4	3	1	1	4	0	1	1	0	0	4	0	1	О	422,209
27	9	5	5	5	3	3	1	1	1	1	2	1	1	2	0	0	1	0	384,085
28	7	3	5	4	2	3	1	1	1	0	1	0	1	0	1	1	1	0	343,634
29	8	3	5	3	3	3	0	1	2	0	1	0	1	0	1	0	1	0	299,132
30	6	4	4	3	3	2	1	1	1	0	0	0	0	0	1	3	0	0	278,909
31	7	7	4	4	4	3	2	2	1	1	0	0	0	0	0	1	0	0	277,282
32	10	10	6	5	5	5	3	3	1	1	0	0	0	0	0	4	0	0	279,912
33	17	15	10	9	6	8	3	3	3	1	1	0	1	1	1	1	0	0	273,378
34	26	19	16	12	8	11	4	3	3	2	2	0	1	1	5	1	1	0	236,831
35	35	27	20	16	10	12	6	5	5	2	5	1	1	4	2	0	2	0	179,363
36	39	29	23	19	11	13	7	6	2	2	3	1	1	3	1	0	1	0	114,227
37	45	34	30	20	12	20	10	7	3	3	3	2	2	2	1	0	2	0	66,713
38	51	36	28	25	14	14	18	11	5	6	3	3	5	1	1	0	1	0	37,391
39	39	31	22	17	11	11	14	5	3	3	1	2	2	1	0	0	1	0	20,209
40	29	24	19	15	11	8	15	4	2	4	1	2	1	1	0	0	2	0	10,289
41	18	14	10	8	5	5	10	2	1	1	1	1	1	0	0	0	0	0	4,742
42	9	7	5	3	2	2	5	1	1	1	0	0	0	0	0	0	0	0	1,937
43	4	3	2	1	1	1	3	0	0	0	0	0	0	0	0	0	0	0	673
44	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	188
45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	42
46	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4
47	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
48	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
49	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	830	651	478	382	338	324	229	144	128	99	85	68	58	48	34	32	29	0	19,835,446

Fuente: IMSS. 5/5

II.3 Hipótesis demográfica de crecimiento de asegurados

	Escenario	Base		Escenario	Base		Escenario	Base
Año	Asegurados al 31 de diciembre	Tasa anual %	Año	Asegurados al 31 de diciembre	Tasa anual %	Año	Asegurados al 31 de diciembre	Tasa anual %
2018	19,835,446	8.13	2053	42,484,021	1.00	2088	60,225,538	1.00
2019	20,354,781	2.62	2054	42,909,669	1.00	2089	60,829,109	1.00
2020	20,857,544	2.47	2055	43,339,586	1.00	2090	61,438,735	1.00
2021	21,399,840	2.60	2056	43,773,813	1.00	2091	62,054,475	1.00
2022	21,977,636	2.70	2057	44,212,394	1.00	2092	62,676,391	1.00
2023	22,571,032	2.70	2058	44,655,374	1.00	2093	63,304,545	1.00
2024	23,203,021	2.80	2059	45,102,795	1.00	2094	63,939,000	1.00
2025	23,843,620	2.76	2060	45,554,703	1.00	2095	64,579,819	1.00
2026	24,503,786	2.77	2061	46,011,142	1.00	2096	65,227,065	1.00
2027	25,183,986	2.78	2062	46,472,158	1.00	2097	65,880,804	1.00
2028	25,883,835	2.78	2063	46,937,798	1.00	2098	66,541,100	1.00
2029	26,603,097	2.78	2064	47,408,107	1.00	2099	67,208,019	1.00
2030	27,339,527	2.77	2065	47,883,132	1.00	2100	67,881,628	1.00
2031	28,092,171	2.75	2066	48,362,920	1.00	2101	68,561,994	1.00
2032	28,857,805	2.73	2067	48,847,521	1.00	2102	69,249,185	1.00
2033	29,634,410	2.69	2068	49,336,980	1.00	2103	69,943,269	1.00
2034	30,419,729	2.65	2069	49,831,348	1.00	2104	70,644,316	1.00
2035	31,211,271	2.60	2070	50,330,674	1.00	2105	71,352,394	1.00
2036	32,006,237	2.55	2071	50,835,008	1.00	2106	72,067,576	1.00
2037	32,801,547	2.48	2072	51,344,399	1.00	2107	72,789,932	1.00
2038	33,593,631	2.41	2073	51,858,899	1.00	2108	73,519,535	1.00
2039	34,378,579	2.34	2074	52,378,558	1.00	2109	74,256,456	1.00
2040	35,152,121	2.25	2075	52,903,429	1.00	2110	75,000,770	1.00
2041	35,909,785	2.16	2076	53,433,564	1.00	2111	75,752,551	1.00
2042	36,646,736	2.05	2077	53,969,015	1.00	2112	76,511,874	1.00
2043	37,357,864	1.94	2078	54,509,837	1.00	2113	77,278,814	1.00
2044	38,038,061	1.82	2079	55,056,083	1.00	2114	78,053,448	1.00
2045	38,682,523	1.69	2080	55,607,807	1.00	2115	78,835,853	1.00
2046	39,286,966	1.56	2081	56,165,064	1.00	2116	79,626,107	1.00
2047	39,847,508	1.43	2082	56,727,910	1.00	2117	80,424,289	1.00
2048	40,360,675	1.29	2083	57,296,402	1.00	2118	81,230,479	1.00
2049	40,823,266	1.15	2084	57,870,595	1.00			
2050	41,232,262	1.00	2085	58,450,547	1.00			
2051	41,645,359	1.00	2086	59,036,316	1.00	prom.	49,891,177	1.42
2052	42,062,598	1.00	2087	59,627,960	1.00			

Fuente: Dirección de Finanzas, IMSS.

II.4 Factores de distribución de nuevos ingresantes

Edad	Trabaja	adores	Edad	Trabaja	adores	Edad	Trabajadores	
Luau	no IMSS	IMSS		no IMSS	IMSS		no IMSS	IMSS
15	0.0023	0.0029	30	0.0154	0.0673	45	0.0039	0.0007
16	0.0163	0.0050	31	0.0136	0.0606	46	0.0036	0.0004
17	0.0511	0.0082	32	0.0120	0.0528	47	0.0034	0.0003
18	0.1151	0.0126	33	0.0108	0.0446	48	0.0032	0.0001
19	0.1721	0.0185	34	0.0097	0.0366	49	0.0030	0.0001
20	0.1178	0.0259	35	0.0087	0.0291	50	0.0029	0.0000
21	0.0856	0.0343	36	0.0079	0.0226	51	0.0027	0.0000
22	0.0648	0.0435	37	0.0072	0.0170	52	0.0025	0.0000
23	0.0508	0.0527	38	0.0066	0.0125	53	0.0024	0.0000
24	0.0408	0.0613	39	0.0061	0.0089	54	0.0023	0.0000
25	0.0335	0.0683	40	0.0056	0.0062	55	0.0022	0.0000
26	0.0279	0.0733	41	0.0052	0.0042	56	0.0021	0.0000
27	0.0237	0.0757	42	0.0048	0.0028	57	0.0020	0.0000
28	0.0203	0.0754	43	0.0045	0.0018	58	0.0019	0.0000
29	0.0176	0.0725	44	0.0042	0.0012			

Fuente: Dirección de Finanzas, IMSS.

II.5 Densidad de cotización

Edad	Densidad	Edad	Densidad	Edad	Densidad	Edad	Densidad	Edad	Densidad
15	0.799448	35	0.912151	55	0.942356	75	0.951640	95	0.948164
16	0.826897	36	0.914366	56	0.943246	76	0.951660	96	0.948164
17	0.838104	37	0.916487	57	0.944089	77	0.951640	97	0.948164
18	0.846595	38	0.918517	58	0.944882	78	0.951578	98	0.948164
19	0.853659	39	0.920462	59	0.945630	79	0.951475	99	0.948164
20	0.859801	40	0.922327	60	0.946330	80	0.951332	100	0.948164
21	0.865278	41	0.924112	61	0.946986	81	0.951147	101	0.948164
22	0.870246	42	0.925823	62	0.947597	82	0.950922	102	0.948164
23	0.874804	43	0.927464	63	0.948164	83	0.950655	103	0.948164
24	0.879024	44	0.929034	64	0.948685	84	0.950345	104	0.948164
25	0.882956	45	0.930539	65	0.949164	85	0.949995	105	0.948164
26	0.886640	46	0.931980	66	0.949601	86	0.949601	106	0.948164
27	0.890106	47	0.933359	67	0.949995	87	0.949164	107	0.948164
28	0.893379	48	0.934677	68	0.950345	88	0.948685	108	0.948164
29	0.896475	49	0.935937	69	0.950655	89	0.948164	109	0.948164
30	0.899416	50	0.937142	70	0.950922	90	0.948164	110	0.948164
31	0.902210	51	0.938290	7 1	0.951147	91	0.948164		
32	0.904872	52	0.939383	72	0.951332	92	0.948164		
33	0.907410	53	0.940425	73	0.951475	93	0.948164		
34	0.909834	54	0.941416	74	0.951578	94	0.948164		

Nota: Valores ajustados a una densidad promedio del 92 % (31.12.94)

Fuente: Dirección de Finanzas, IMSS.

III Bases financieras

III.1 Estructura por edad y salario promedio diario de cotización de la generación conjunta de trabajadores asegurados en el SIV

_								
Edad	Asegurados	Salario promedio	Edad	Asegurados	Salario promedio	Edad	Asegurados	Salario promedio
15	877	118.27	45	453,553	418.50	75	4,332	258.54
16	13,583	130.31	46	446,690	417.36	76	3,788	257.88
17	37,719	144.24	47	406,137	416.04	77	2,732	254.62
18	205,405	158.67	48	384,369	413.33	78	2,661	253.28
19	308,780	174.20	49	361,525	409.99	79	1,868	250.76
20	487,406	190.28	50	340,114	406.12	80	1,506	250.05
21	449,528	206.67	51	311,227	401.94	81	1,188	251.81
22	500,701	223.11	52	297,087	396.89	82	1,009	249.35
23	582,337	239.34	53	277,349	392.22	83	830	248.14
24	640,874	255.48	54	267,871	385.88	84	651	249.26
25	661,387	271.44	55	251,460	379.67	85	478	248.63
26	683,045	287.14	56	236,204	373.60	86	382	249.52
27	673,635	302.11	57	213,444	366.43	87	338	250.28
28	672,605	316.35	58	210,523	358.61	88	324	249.68
29	645,022	330.04	59	195,566	350.33	89	229	244.20
30	629,034	342.63	60	136,111	345.39	90	144	251.43
31	616,787	354.37	61	103,396	338.34	91	128	245.28
32	588,486	365.39	62	80,389	330.35	92	99	257.05
33	569,066	375.53	63	66,301	323.35	93	85	243.82
34	564,638	384.54	64	55,336	315.46	94	68	241.98
35	558,118	392.07	65	39,115	310.12	95	58	245.85
36	557,513	398.72	66	30,399	302.98	96	48	239.15
37	530,670	404.43	67	23,052	296.80	97	34	237.28
38 39	524,845 495,796	409.28 413.00	68 69	19,619 15,049	289.79 284.64	98 99	32 29	249.58 240.92
	,			,				2 10.32
40 41	476,301 479,382	415.99 417.95	70 71	12,155 10,390	279.36 274.65	100	0	-
42	462,932	418.93	71 72	8,070	274.03	Tota	l asegurados	19.835 446
43	464,727	419.38	72 73	6,794	267.50		rio promedio	347.44
44	466,470	419.04	74	5,441	262.79		ad Promedio	36.73
	100,-70	115.04		J, 	202.10			30.73

 $^{^{1\!/}}$ Asegurados afiliados hasta el 30 de junio de 1997, con derecho a elección de régimen.

^{2/}Asegurados afiliados a partir del 1º de julio de 1997, con derecho a los beneficios bajo la ley de 1997. Fuente: Dirección de Finanzas, IMSS.

III.2 Saldo promedio acumulado en la cuenta individual de los asegurados por edad. Generación conjunta. Cifras en pesos de 2018

		Retiro, censantía en					Retiro, censantía en					Retiro, censantía en		
Edad	Asegurados		Vivienda	Total	Edad	Asegurados		Vivienda	Total	Edad	Asegurados	edad	Vivienda	Total
Ludu	Ascguiados	avanzada y	VIVICIIGA	iotai	Ludu	Aseguiados	avanzada y	VIVICIIGA	Total	Luuu	Aseguiados	avanzada y	VIVICIIGG	rotai
		vejez ¹					vejez ¹					vejez ¹		
15	877	1,555	730	2,285	45	453,553	170,996	71,910	242,906	75	4,332	68,906	43,713	112,619
16	13,583	1,940	940	2,880	46	446,690	174,484	72,975	247,458	76	3,788	67,068	43,609	110,676
17	37,719	2,881	1,424	4,304	47	406,137	180,900	75,353	256,253	77	2,732	66,595	46,074	112,668
18	205,405	2,794	1,424	4,218	48	384,369	184,990	76,961	261,951	78	2,661	72,085	47,502	119,587
19	308,780	4,633	2,460	7,093	49	361,525	186,010	76,859	262,869	79	1,868	73,453	41,381	114,833
20	487,406	6,697	3,649	10,346	50	340,114	188,455	78,187	266,642	80	1,506	64,311	42,006	106,317
21	449,528	9,913	5,460	15,373	51	311,227	190,275	79,427	269,702	81	1,188	86,921	58,724	145,646
22	500,701	12,551	6,918	19,469	52	297,087	191,250	80,400	271,651	82	1,009	81,480	46,243	127,723
23	582,337	15,295	8,508	23,803	53	277,349	191,783	81,562	273,345	83	830	73,769	50,560	124,328
24	640,874	18,720	10,518	29,238	54	267,871	193,342	82,662	276,005	84	651	59,653	45,582	105,235
25	661,387	23,001	13,027	36,028	55	251,460	195,133	83,748	278,881	85	478	63,829	41,608	105,436
26	683,045	27,955	15,902	43,857	56	236,204	194,956	83,912	278,867	86	382	88,554	68,401	156,955
27	673,635	33,516	19,028	52,544	57	213,444	198,651	85,443	284,094	87	338	79,062	43,575	122,637
28	672,605	39,655	22,411	62,065	58	210,523	196,129	84,033	280,162	88	324	64,108	40,590	104,698
29	645,022	46,553	26,171	72,724	59	195,566	193,908	82,924	276,832	89	229	78,561	53,968	132,529
30	629,034	53,862	29,902	83,764	60	136,111	177,393	78,843	256,236	90	144	96,075	29,292	125,367
31	616,787	60,609	33,096	93,705	61	103,396	159,721	71,680	231,400	91	128	96,958	33,451	130,409
32	588,486	69,040	36,980	106,020	62	80,389	150,815	68,618	219,433	92	99	70,637	32,685	103,322
33	569,066	77,597	40,559	118,155	63	66,301	140,038	66,349	206,387	93	85	92,894	60,194	153,087
34	564,638	86,410	44,096	130,507	64	55,336	128,925	63,486	192,412	94	68	63,375	27,315	90,690
35	558,118	95,401	47,252	142,654	65	39,115	113,571	57,370	170,941	95	58	79,190	38,078	117,267
36	557,513	104,613	50,406	155,019	66	30,399	98,584	51,457	150,041	96	48	47,267	13,722	60,989
37	530,670	113,964	53,604	167,568	67	23,052	96,793	51,923	148,716	97	34	146,646	67,015	213,661
38	524,845	122,709	55,520	178,229	68	19,619	87,662	46,806	134,469	98	32	73,895	27,980	101,875
39	495,796	131,211	58,123	189,334	69	15,049	78,254	43,337	121,592	99	29	75,709	34,615	110,325
40	476,301	139,281	61,094	200,375	70	12,155	78,759	45,273	124,032	100	0	0	0	0
41	479,382	145,686	62,977	208,663	71	10,390	71,732	42,780	114,511	Total	19,835,446	99,352	45,146	144,497
42	462,932	151,988	64,971	216,958	72	8,070	97,893	70,668	168,560					
43	464,727	159,075	67,375	226,450	73	6,794	66,975	40,972	107,947	Impor	te acumulad	o (en millone	s de pesos	;)
44	466,470	165,893	70,291	236,184	74	5,441	62,504	38,992	101,495			1,970,684	895,488	2,866,172

¹ El saldo acumulado contempla las aportaciones del 6.5% del salario base de cotización a cargo de los asegurados, patrones y Gobierno Federal, así como la aportación por cuota social que realiza el Gobierno Federal.

Nota: Incluye a los asegurados vigentes al 31 de diciembre de 2018 afiliados hasta el 30 de junio de 1997, así como a los afiliados a partir del 1º de julio de 1997.

Fuente: Elaborado por la Coordinación de Administración de Riesgos Institucionales a partir de la información de cuentas individuales proporcionada por la CONSAR.

III.4 Aportación por Cuota social a la subcuenta de Retiro Cesantía en Edad Avanzada y Vejez

	Aportación por cuota social a la									
Rango en Veces la	subcuenta de RCV a diciembre de cada año ¹									
Unidad de Medida y										
Actualización	(cifras en pesos)									
	2015	2016	2017	2018						
1 UMA	4.90	5.05	5.37	5.64						
1.01 a 4 UMA	4.70	4.84	5.14	5.40						
4.01 a 7 UMA	4.49	4.63	4.92	5.17						
7.01 a 10 UMA	4.29	4.42	4.70	4.93						
10.01 a 15 UMA	4.08	4.21	4.47	4.70						
> 15 UMA	0.00	0.00	0.00	0.00						

¹ De acuerdo a lo publicado en el DOF del 27 de enero de 2016 la Unidad de Medida y Actualización (UMA) se crea para ser utilizada como unidad de cuenta, índice, base, medida o referencia para determinar la cuantía del pago de las obligaciones y supuestos previstos en las leyes federales, de las entidades federativas y de la Ciudad de México, así como en las disposiciones jurídicas que emanen de dichas leyes, sustituyendo el esquema Veces Salario Mínimo (VSM), con el que se calculaba el pago de obligaciones aprobado en mayo de 2009 en el que se establecía que a partir del tercer trimestre del mismo año, la cuota social se otorga de acuerdo al número de salarios mínimos que cotice el asegurado.

IV Base Legal

IV.1 Antecedentes

En caso de que un trabajador se encuentre en estado de invalidez tiene derecho a una pensión temporal o definitiva, además deberá contratar un seguro de sobrevivencia que cubra a sus beneficiarios en caso de muerte (Art. 120).

Se otorgará pensión temporal en caso de existir posibilidad de recuperación para el trabajo (Art. 121).

Para gozar de las prestaciones de este ramo se requiere que al declararse la invalidez el asegurado tenga acreditado el pago de doscientas cincuenta semanas de cotización. En caso que el dictamen respectivo determine el 75% o más de invalidez sólo se requerirá de ciento cincuenta semanas de cotización (Art. 122).

IV.2 Cuantía de la pensión

Para determinar el monto del beneficio a recibir por el inválido, se calculará una cuantía básica, CB_i, como se indica a continuación:

$$CB_i = (35\% * PS) * (1 + AYA) (Art. 141)$$

En donde *PS*: es el promedio de los salarios correspondientes a las últimas quinientas semanas de cotización actualizadas conforme al Índice Nacional de Precios al Consumidor (INPC), y *AYA* es el porcentaje de ayudas asistenciales y asignaciones familiares.

El importe de la pensión que se otorgue incluyendo las asignaciones familiares y ayudas asistenciales que se concedan, no debe ser mayor al 100% del salario promedio que sirvió de base para fijar la cuantía de la pensión (Art. 143).

Para efectos del cálculo de las cuantías de las pensiones de invalidez y vida se utilizaron los vectores distribuidos por edad de los salarios promedio diarios de los últimos 10 años. Sin embargo, para efectos de ilustración, se presentan a continuación los salarios promedio diarios nominales y actualizados en cada año:

IV.3	Salarios prome	edio diarios	nominales v	actualizados en	cada año
1 V .J	Salai los piolit	sulo ulai los	HUHHHIAICS Y	actualizados e ll	caua an

Año	Salario promedio diario nominal	Índice nacional de precios al consumidor (a diciembre)	Inflación del año (%)	Factor para actualizar a \$ de 2018	Salario promedio diario actualizado a \$ de 2018
2009	230.96	71.772	3.57	1.4354	331.51
2010	239.72	74.931	4.40	1.3749	329.58
2011	250.66	77.792	3.82	1.3243	331.95
2012	262.81	80.568	3.57	1.2787	336.04
2013	272.80	83.770	3.97	1.2298	335.49
2014	285.42	87.189	4.08	1.1816	337.24
2015	298.10	89.047	2.13	1.1569	344.88
2016	311.25	92.039	3.36	1.1193	348.38
2017	326.43	98.273	6.77	1.0483	342.20
2018	347.44	103.020	4.83	1.0000	347.44

El factor de actualización (FA_k) para el año k se calcula mediante la fórmula: Fuente: Dirección de Finanzas, IMSS..

$$FA_k = \frac{INPC_{31/12/2017}}{INPC_{31/12/k}}$$

O de manera recursiva, se define FA_{2017} = 1, y para k < 2017,

$$FA_k = \frac{FA_{k+1}}{1 + \Delta INPC_{k+1}}$$

En estos términos, la fórmula para calcular el salario promedio diario *(SPD)* de los últimos 10 años es:

$$SPD_{2017} = \frac{1}{10} \sum_{n=0}^{9} \frac{SPDN_{2017-n}}{FA_{2017-n}}$$

En donde $SDPN_k$ es el salario promedio diario nominal en el año k.

El monto del beneficio que se obtiene con la fórmula anteriormente expuesta sirve de base para calcular las pensiones que se deriven de la muerte, tanto del pensionado, como del asegurado, al igual que para fijar la cuantía del aguinaldo anual, el cual no será inferior a treinta días (Art. 142).

Forma de financiamiento del beneficio

Para cubrir el costo de los beneficios a que tiene derecho el inválido y sus beneficiarios, el Instituto calcula el monto constitutivo necesario para que el inválido o sus beneficiarios contraten con la compañía de seguros que decidan una renta vitalicia y un seguro de sobrevivencia.

Para determinar la suma asegurada que el Instituto pagará a la compañía de seguros seleccionada por el pensionado o sus beneficiarios, según sea el caso, al monto constitutivo se le restará al saldo de la cuenta individual y la diferencia positiva será la cantidad a pagar.

Incremento de las pensiones

Las pensiones por invalidez y vida otorgadas serán incrementadas anualmente en el mes de febrero conforme al Índice Nacional de Precios al Consumidor (Art. 145).

Esquema de financiamiento

El Artículo 146 de la Ley del Seguro Social establece que "los recursos necesarios para financiar las prestaciones y los gastos administrativos del seguro de invalidez y vida, así como la constitución de las reservas técnicas, se obtendrán de las cuotas que están obligados a cubrir los patrones, trabajadores y demás sujetos obligados, así como de la contribución que corresponda al Estado", por lo que la prima a pagar para cubrir las erogaciones de este seguro se distribuyen de la siguiente forma:

	Prima	Base de cotización
Patrón	1.750 %	Salario integrado (límite superior ³² el
Trabajador	0.625 %	equivalente a 25 veces la Unidad de
Estado	0.125 %	Medida y Actualización y como límite inferior el Salario Mínimo General del
Total	2.500 %	D.F.).

Fuente: Ley del Seguro Social.

³² Límite superior vigente a partir de julio de 2007, de acuerdo al artículo Vigésimo Quinto Transitorio de la Ley de Seguro Social de 1997

V Bases Biométricas

V.1 Probabilidades de permanecer como activo. Hombres y Mujeres 2019.

		Hombres		1	Mujeres				Hombres		<u></u>	Mujeres	
Esta d							- 211						
Edad		GT ≥3 y ≤ 9 GA y GF ≥3 y ≤24	GT > 10 GA y GF > 24	GT ≤2 GAyGF ≤2	GT ≥3 y ≤ 9 GA y GF ≥3 y ≤24	GT > 10 GA y GF > 24	Edad	GT ≤2 GAyGF ≤2	GT ≥3 y ≤ 9 GA y GF ≥3 y ≤24	GT > 10 GA y GF > 24	GT ≤2 GAyGF ≤2	GT ≥3 y ≤ 9 GA y GF ≥3 y ≤24	GT > 10 GA y GF > 24
15	0.99937	0.99937	0.99937	0.99983	0.99983	0.99983	63	0.98887	0.98887	0.71422	0.99627	0.99627	0.64717
16	0.99937	0.99937	0.99937	0.99982	0.99982	0.99982	64	0.98862	0.98862	0.74748	0.99623	0.99623	0.67711
17	0.99934	0.99934	0.99934	0.99982	0.99982	0.99982	65	0.98826	0.98826	0.50900	0.99615	0.99615	0.45493
18	0.99931	0.99931	0.99931	0.99980	0.99980	0.99980	66	0.98780	0.98780	0.60726	0.99603	0.99603	0.57073
19	0.99926	0.99926	0.99926	0.99979	0.99979	0.99979	67	0.98724	0.98724	0.63771	0.99587	0.99587	0.59497
20	0.99919	0.99919	0.99919	0.99977	0.99977	0.99977	68	0.98657	0.98657	0.66231	0.99567	0.99567	0.61444
21	0.99912	0.99912	0.99912	0.99974	0.99974	0.99974	69	0.98579	0.98579	0.68185	0.99545	0.99545	0.62973
22	0.99903	0.99903	0.99903	0.99971	0.99971	0.99971	70	0.98490	0.98490	0.69705	0.99521	0.99521	0.64140
23	0.99894	0.99894	0.99894	0.99967	0.99967	0.99967	71	0.98389	0.98389	0.70855	0.99495	0.99495	0.64999
24	0.99884	0.99884	0.99884	0.99963	0.99963	0.99963	72	0.98275	0.98275	0.71695	0.99467	0.99467	0.65595
25	0.99875	0.99875	0.99875	0.99959	0.99959	0.99959	73	0.98148	0.98148	0.72273	0.99440	0.99440	0.65973
26	0.99865	0.99865	0.99865	0.99954	0.99954	0.99954	74	0.98007	0.98007	0.72633	0.99415	0.99415	0.66174
27	0.99855	0.99855	0.99855	0.99949	0.99949	0.99949	75	0.97850	0.97850	0.72814	0.99392	0.99392	0.66236
28	0.99845	0.99845	0.99845	0.99943	0.99943	0.99943	76	0.97679	0.97679	0.72852	0.99373	0.99373	0.66196
29	0.99835	0.99835	0.99835	0.99938	0.99938	0.99938	77	0.97490	0.97490	0.72780	0.99359	0.99359	0.66090
30	0.99825	0.99825	0.99825	0.99931	0.99931	0.99931	78	0.97282	0.97282	0.72629	0.99352	0.99352	0.65957
31	0.99814	0.99814	0.99814	0.99925	0.99925	0.99925	79	0.97053	0.97053	0.72427	0.99353	0.99353	0.65831
32	0.99804	0.99804	0.99804	0.99917	0.99917	0.99917	80	0.96794	0.96794	0.72200	0.99363	0.99363	0.65749
33	0.99792	0.99792	0.99792	0.99910	0.99910	0.99910	81	0.96496	0.96496	0.71969	0.99382	0.99382	0.65746
34	0.99781	0.99781	0.99781	0.99902	0.99902	0.99902	82	0.96143	0.96143	0.71749	0.99409	0.99409	0.65859
35	0.99768	0.99768	0.99768	0.99893	0.99893	0.99893	83	0.95708	0.95708	0.71545	0.99442	0.99442	0.66120
36	0.99754	0.99754	0.99754	0.99884	0.99884	0.99884	84	0.95153	0.95153	0.71348	0.99480	0.99480	0.66559
37	0.99738	0.99738	0.99738	0.99873	0.99873	0.99873	85	0.94422	0.94422	0.71129	0.99516	0.99516	0.67204
38	0.99721	0.99721	0.99721	0.99862	0.99862	0.99862	86	0.93437	0.93437	0.70831	0.99545	0.99545	0.68075
39	0.99702	0.99702	0.99702	0.99850	0.99850	0.99850	87	0.92081	0.92081	0.70357	0.99556	0.99556	0.69183
40	0.99680	0.99680	0.99680	0.99836	0.99836	0.99836	88	0.90189	0.90189	0.69550	0.99527	0.99527	0.70522
41	0.99655	0.99655	0.99655	0.99821	0.99821	0.99821	89	0.87524	0.87524	0.68174	0.99418	0.99418	0.72055
42	0.99627	0.99627	0.99627	0.99804	0.99804	0.99804	90	0.83750	0.83750	0.65883	0.99127	0.99127	0.73673
43	0.99595	0.99595	0.99595	0.99786	0.99786	0.99786	91	0.78418	0.78418	0.62202	0.98382	0.98382	0.75082
44	0.99558	0.99558	0.99558	0.99765	0.99765	0.99765	92	0.70997	0.70997	0.56565	0.96376	0.96376	0.75432
45	0.99516	0.99516	0.99516	0.99742	0.99742	0.99742	93	0.61026	0.61026	0.48459	0.90657	0.90657	0.72216
46	0.99469	0.99469	0.99469	0.99717	0.99717	0.99717	94	0.48477	0.48477	0.37797	0.75486	0.75486	0.59617
47	0.99416	0.99416	0.99416	0.99689	0.99689	0.99689	95	0.34229	0.34229	0.25392	0.49832	0.49832	0.36520
48	0.99355	0.99355	0.99355	0.99659	0.99659	0.99659	96	0.20173	0.20173	0.13070	0.32009	0.32009	0.21149
49	0.99288	0.99288	0.99288	0.99626	0.99626	0.99626	97	0.08422	0.08422	0.02889	0.26927	0.26927	0.18331
50	0.99214	0.99214	0.99214	0.99591	0.99591	0.99591	98	0.00138	0.00138	0.00000	0.26100	0.26100	0.19512
51	0.99132	0.99132	0.99132	0.99554	0.99554	0.99554	99	0.00000	0.00000	0.00000	0.26007	0.26007	0.21126
52	0.99044	0.99044	0.99044	0.99515	0.99515	0.99515	100	0.00000	0.00000	0.00000	0.26000	0.26000	0.22510
53	0.98951	0.98951	0.98951	0.99476	0.99476	0.99476	101	0.00000	0.00000	0.00000	0.26000	0.26000	0.22510
54	0.98856	0.98856	0.98856	0.99437	0.99437	0.99437	102	0.00000	0.00000	0.00000	0.26000	0.26000	0.22510
55	0.98763	0.98763	0.98763	0.99401	0.99401	0.99401	103	0.00000	0.00000	0.00000	0.26000	0.26000	0.22510
56	0.98643	0.98643	0.98643	0.99359	0.99359	0.99359	104	0.00000	0.00000	0.00000	0.26000	0.26000	0.22510
57	0.98577	0.98577	0.98577	0.99322	0.99322	0.99322	105	0.00000	0.00000	0.00000	0.26000	0.26000	0.22510
58 50	0.98501	0.98501	0.98501	0.99313	0.99313	0.99313	106	0.00000	0.00000	0.00000	0.26000	0.26000	0.22510
59	0.98561	0.98561	0.98561	0.99367	0.99367	0.99367	107	0.00000	0.00000	0.00000	0.26000	0.26000	0.22510
60	0.98885	0.98885	0.30115	0.99605	0.99605	0.39779	108	0.00000	0.00000	0.00000	0.26000	0.26000	0.22510
61	0.98901	0.98901	0.60384	0.99619	0.99619	0.49128	109	0.00000	0.00000	0.00000	0.26000	0.26000	0.22510
62	0.98901	0.98901	0.69762	0.99626	0.99626	0.61546	110	0.00000	0.00000	0.00000	0.26000	0.26000	0.22510

V.2 Probabilidades de permanecer como activo. Hombres y Mujeres 2020.

	Hombres				Mujeres	Mujeres			Hombres			Mujeres			
- 4 - 4								***************************************							
Edad		GT ≥3 y ≤9 GA y GF ≥3 y ≤24	GT > 10 GA y GF > 24	GT ≤2 GAyGF ≤2	GT ≥3 y ≤ 9 GA y GF ≥3 y ≤24	GT > 10 GA y GF > 24	Edad	GT ≤2 GA y GF ≤2	GT ≥3 y ≤ 9 GA y GF ≥3 y ≤24	GT > 10 GA y GF > 24	GT ≤2 GA y GF ≤2	GT ≥3 y ≤ 9 GA y GF ≥3 y ≤24	GT > 10 GA y GF > 24		
15	0.99940	0.99940	0.99940	0.99983	0.99983	0.99983	63	0.98912	0.98912	0.71384	0.99614	0.99614	0.64908		
16	0.99939	0.99939	0.99939	0.99982	0.99982	0.99982	64	0.98887	0.98887	0.74716	0.99609	0.99609	0.67890		
17	0.99937	0.99937	0.99937	0.99982	0.99982	0.99982	65	0.98852	0.98852	0.50853	0.99600	0.99600	0.44736		
18	0.99933	0.99933	0.99933	0.99980	0.99980	0.99980	66	0.98806	0.98806	0.60667	0.99587	0.99587	0.56948		
19	0.99928	0.99928	0.99928	0.99979	0.99979	0.99979	67	0.98750	0.98750	0.63716	0.99570	0.99570	0.59374		
20	0.99921	0.99921	0.99921	0.99976	0.99976	0.99976	68	0.98684	0.98684	0.66180	0.99550	0.99550	0.61322		
21	0.99914	0.99914	0.99914	0.99974	0.99974	0.99974	69	0.98608	0.98608	0.68138	0.99527	0.99527	0.62851		
22	0.99905	0.99905	0.99905	0.99971	0.99971	0.99971	70	0.98520	0.98520	0.69661	0.99501	0.99501	0.64019		
23	0.99896	0.99896	0.99896	0.99967	0.99967	0.99967	71	0.98420	0.98420	0.70815	0.99473	0.99473	0.64877		
24	0.99886	0.99886	0.99886	0.99963	0.99963	0.99963	72	0.98308	0.98308	0.71657	0.99444	0.99444	0.65473		
25	0.99876	0.99876	0.99876	0.99959	0.99959	0.99959	73	0.98182	0.98182	0.72238	0.99416	0.99416	0.65850		
26	0.99866	0.99866	0.99866	0.99954	0.99954	0.99954	74	0.98043	0.98043	0.72601	0.99388	0.99388	0.66049		
27	0.99856	0.99856	0.99856	0.99949	0.99949	0.99949	75	0.97888	0.97888	0.72784	0.99364	0.99364	0.66110		
28	0.99846	0.99846	0.99846	0.99943	0.99943	0.99943	76	0.97718	0.97718	0.72825	0.99343	0.99343	0.66068		
29	0.99836	0.99836	0.99836	0.99937	0.99937	0.99937	77	0.97532	0.97532	0.72756	0.99329	0.99329	0.65962		
30	0.99826	0.99826	0.99826	0.99930	0.99930	0.99930	78	0.97327	0.97327	0.72607	0.99321	0.99321	0.65827		
31	0.99816	0.99816	0.99816	0.99924	0.99924	0.99924	79	0.97099	0.97099	0.72407	0.99322	0.99322	0.65701		
32	0.99806	0.99806	0.99806	0.99916	0.99916	0.99916	80	0.96843	0.96843	0.72182	0.99332	0.99332	0.65619		
33	0.99795	0.99795	0.99795	0.99909	0.99909	0.99909	81	0.96548	0.96548	0.71954	0.99352	0.99352	0.65618		
34	0.99783	0.99783	0.99783	0.99900	0.99900	0.99900	82	0.96197	0.96197	0.71737	0.99380	0.99380	0.65732		
35	0.99770	0.99770	0.99770	0.99892	0.99892	0.99892	83	0.95766	0.95766	0.71537	0.99416	0.99416	0.65996		
36	0.99756	0.99756	0.99756	0.99882	0.99882	0.99882	84	0.95215	0.95215	0.71345	0.99456	0.99456	0.66439		
37	0.99741	0.99741	0.99741	0.99871	0.99871	0.99871	85	0.94490	0.94490	0.71133	0.99496	0.99496	0.67088		
38	0.99724	0.99724	0.99724	0.99860	0.99860	0.99860	86	0.93513	0.93513	0.70845	0.99529	0.99529	0.67964		
39	0.99704	0.99704	0.99704	0.99847	0.99847	0.99847	87	0.92160	0.92160	0.70375	0.99544	0.99544	0.69078		
40	0.99683	0.99683	0.99683	0.99833	0.99833	0.99833	88	0.90288	0.90288	0.69590	0.99520	0.99520	0.70424		
41	0.99658	0.99658	0.99658	0.99818	0.99818	0.99818	89	0.87644	0.87644	0.68238	0.99416	0.99416	0.71966		
42	0.99630	0.99630	0.99630	0.99801	0.99801	0.99801	90	0.83898	0.83898	0.65978	0.99134	0.99134	0.73597		
43	0.99598	0.99598	0.99598	0.99782	0.99782	0.99782	91	0.78602	0.78602	0.62338	0.98405	0.98405	0.75026		
44	0.99562	0.99562	0.99562	0.99761	0.99761	0.99761	92	0.71222	0.71222	0.56746	0.96435	0.96435	0.75420		
45	0.99520	0.99520	0.99520	0.99737	0.99737	0.99737	93	0.61290	0.61290	0.48684	0.90805	0.90805	0.72298		
46	0.99473	0.99473	0.99473	0.99712	0.99712	0.99712	94	0.48765	0.48765	0.38051	0.75788	0.75788	0.59861		
47	0.99419	0.99419	0.99419	0.99683	0.99683	0.99683	95	0.34508	0.34508	0.25642	0.50132	0.50132	0.36771		
48	0.99359	0.99359	0.99359	0.99652	0.99652	0.99652	96	0.20404	0.20404	0.13277	0.32112	0.32112	0.21211		
49	0.99291	0.99291	0.99291	0.99619	0.99619	0.99619	97	0.08585	0.08585	0.03033	0.26944	0.26944	0.18314		
50	0.99217	0.99217	0.99217	0.99583	0.99583	0.99583	98	0.00237	0.00237	0.00000	0.26102	0.26102	0.19487		
51	0.99135	0.99135	0.99135	0.99544	0.99544	0.99544	99	0.00000	0.00000	0.00000	0.26007	0.26007	0.21106		
52	0.99046	0.99046	0.99046	0.99505	0.99505	0.99505	100	0.00000	0.00000	0.00000	0.26000	0.26000	0.22495		
53	0.98953	0.98953	0.98953	0.99464	0.99464	0.99464	101	0.00000	0.00000	0.00000	0.26000	0.26000	0.22495		
54	0.98858	0.98858	0.98858	0.99425	0.99425	0.99425	102	0.00000	0.00000	0.00000	0.26000	0.26000	0.22495		
55	0.98764	0.98764	0.98764	0.99387	0.99387	0.99387	103	0.00000	0.00000	0.00000	0.26000	0.26000	0.22495		
56	0.98644	0.98644	0.98644	0.99344	0.99344	0.99344	104	0.00000	0.00000	0.00000	0.26000	0.26000	0.22495		
57	0.98577	0.98577	0.98577	0.99307	0.99307	0.99307	105	0.00000	0.00000	0.00000	0.26000	0.26000	0.22495		
58	0.98501	0.98501	0.98501	0.99298	0.99298	0.99298	106	0.00000	0.00000	0.00000	0.26000	0.26000	0.22495		
59	0.98563	0.98563	0.98563	0.99353	0.99353	0.99353	107	0.00000	0.00000	0.00000	0.26000	0.26000	0.22495		
60	0.98909	0.98909	0.35988	0.99591	0.99591	0.43692	108	0.00000	0.00000	0.00000	0.26000	0.26000	0.22495		
61	0.98925	0.98925	0.60471	0.99606	0.99606	0.49300	109	0.00000	0.00000	0.00000	0.26000	0.26000	0.22495		
62	0.98925	0.98925	0.69842	0.99613	0.99613	0.61749	110	0.00000	0.00000	0.00000	0.26000	0.26000	0.22495		

V.3 Probabilidades de permanecer como activo. Hombres y Mujeres 2021.

		Hombres	aaac	Juc	Mujeres				Hombres		y .	Mujeres	
Edad		GT ≥3 y ≤ 9 GA y GF ≥3 y ≤24	GT > 10 GA y GF > 24	GT ≤2 GAyGF ≤2	GT ≥3 y ≤ 9 GA y GF ≥3 y ≤24	GT > 10 GA y GF > 24	Edad	GT ≤2 GAyGF ≤2	GT ≥3 y ≤ 9 GA y GF ≥3 y ≤24	GT > 10 GA y GF > 24	GT ≤2 GAyGF ≤2	GT ≥3 y ≤ 9 GA y GF ≥3 y ≤24	GT > 10 GA y GF > 24
15	0.99940	0.99940	0.99940	0.99983	0.99983	0.99983	63	0.98912	0.98912	0.71384	0.99614	0.99614	0.64908
16	0.99939	0.99939	0.99939	0.99982	0.99982	0.99982	64	0.98887	0.98887	0.74716	0.99609	0.99609	0.67890
17	0.99937	0.99937	0.99937	0.99982	0.99982	0.99982	65	0.98852	0.98852	0.50853	0.99600	0.99600	0.44736
18	0.99933	0.99933	0.99933	0.99980	0.99980	0.99980	66	0.98806	0.98806	0.60667	0.99587	0.99587	0.56948
19	0.99928	0.99928	0.99928	0.99979	0.99979	0.99979	67	0.98750	0.98750	0.63716	0.99570	0.99570	0.59374
20	0.99921	0.99921	0.99921	0.99976	0.99976	0.99976	68	0.98684	0.98684	0.66180	0.99550	0.99550	0.61322
21	0.99914	0.99914	0.99914	0.99974	0.99974	0.99974	69	0.98608	0.98608	0.68138	0.99527	0.99527	0.62851
22	0.99905	0.99905	0.99905	0.99971	0.99971	0.99971	70	0.98520	0.98520	0.69661	0.99501	0.99501	0.64019
23	0.99896	0.99896	0.99896	0.99967	0.99967	0.99967	71	0.98420	0.98420	0.70815	0.99473	0.99473	0.64877
24	0.99886	0.99886	0.99886	0.99963	0.99963	0.99963	72	0.98308	0.98308	0.71657	0.99444	0.99444	0.65473
25	0.99876	0.99876	0.99876	0.99959	0.99959	0.99959	73	0.98182	0.98182	0.72238	0.99416	0.99416	0.65850
26	0.99866	0.99866	0.99866	0.99954	0.99954	0.99954	74	0.98043	0.98043	0.72601	0.99388	0.99388	0.66049
27	0.99856	0.99856	0.99856	0.99949	0.99949	0.99949	75	0.97888	0.97888	0.72784	0.99364	0.99364	0.66110
28	0.99846	0.99846	0.99846	0.99943	0.99943	0.99943	76	0.97718	0.97718	0.72825	0.99343	0.99343	0.66068
29	0.99836	0.99836	0.99836	0.99937	0.99937	0.99937	77	0.97532	0.97532	0.72756	0.99329	0.99329	0.65962
30	0.99826	0.99826	0.99826	0.99930	0.99930	0.99930	78	0.97327	0.97327	0.72607	0.99321	0.99321	0.65827
31	0.99816	0.99816	0.99816	0.99924	0.99924	0.99924	79	0.97099	0.97099	0.72407	0.99322	0.99322	0.65701
32	0.99806	0.99806	0.99806	0.99916	0.99916	0.99916	80	0.96843	0.96843	0.72182	0.99332	0.99332	0.65619
33	0.99795	0.99795	0.99795	0.99909	0.99909	0.99909	81	0.96548	0.96548	0.71954	0.99352	0.99352	0.65618
34	0.99783	0.99783	0.99783	0.99900	0.99900	0.99900	82	0.96197	0.96197	0.71737	0.99380	0.99380	0.65732
35	0.99770	0.99770	0.99770	0.99892	0.99892	0.99892	83	0.95766	0.95766	0.71537	0.99416	0.99416	0.65996
36	0.99756	0.99756	0.99756	0.99882	0.99882	0.99882	84	0.95215	0.95215	0.71345	0.99456	0.99456	0.66439
37	0.99741	0.99741	0.99741	0.99871	0.99871	0.99871	85	0.94490	0.94490	0.71133	0.99496	0.99496	0.67088
38	0.99724	0.99724	0.99724	0.99860	0.99860	0.99860	86	0.93513	0.93513	0.70845	0.99529	0.99529	0.67964
39	0.99704	0.99704	0.99704	0.99847	0.99847	0.99847	87	0.92160	0.92160	0.70375	0.99544	0.99544	0.69078
40	0.99683	0.99683	0.99683	0.99833	0.99833	0.99833	88	0.90288	0.90288	0.69590	0.99520	0.99520	0.70424
41	0.99658	0.99658	0.99658	0.99818	0.99818	0.99818	89	0.87644	0.87644	0.68238	0.99416	0.99416	0.71966
42	0.99630	0.99630	0.99630	0.99801	0.99801	0.99801	90	0.83898	0.83898	0.65978	0.99134	0.99134	0.73597
43	0.99598	0.99598	0.99598	0.99782	0.99782	0.99782	91	0.78602	0.78602	0.62338	0.98405	0.98405	0.75026
44	0.99562	0.99562	0.99562	0.99761	0.99761	0.99761	92	0.71222	0.71222	0.56746	0.96435	0.96435	0.75420
45	0.99520	0.99520	0.99520	0.99737	0.99737	0.99737	93	0.61290	0.61290	0.48684	0.90805	0.90805	0.72298
46	0.99473	0.99473	0.99473	0.99712	0.99712	0.99712	94	0.48765	0.48765	0.38051	0.75788	0.75788	0.59861
47	0.99419	0.99419	0.99419	0.99683	0.99683	0.99683	95	0.34508	0.34508	0.25642	0.50132	0.50132	0.36771
48	0.99359	0.99359	0.99359	0.99652	0.99652	0.99652	96	0.20404	0.20404	0.13277	0.32112	0.32112	0.21211
49	0.99291	0.99291	0.99291	0.99619	0.99619	0.99619	97	0.08585	0.08585	0.03033	0.26944	0.26944	0.18314
50	0.99217	0.99217	0.99217	0.99583	0.99583	0.99583	98	0.00237	0.00237	0.00000	0.26102	0.26102	0.19487
51	0.99135	0.99135	0.99135	0.99544	0.99544	0.99544	99	0.00000	0.00000	0.00000	0.26007	0.26007	0.21106
52	0.99046	0.99046	0.99046	0.99505	0.99505	0.99505	100	0.00000	0.00000	0.00000	0.26000	0.26000	0.22495
53	0.98953	0.98953	0.98953	0.99464	0.99464	0.99464	101	0.00000	0.00000	0.00000	0.26000	0.26000	0.22495
54	0.98858	0.98858	0.98858	0.99425	0.99425	0.99425	102	0.00000	0.00000	0.00000	0.26000	0.26000	0.22495
55	0.98764	0.98764	0.98764	0.99387	0.99387	0.99387	103	0.00000	0.00000	0.00000	0.26000	0.26000	0.22495
56	0.98644	0.98644	0.98644	0.99344	0.99344	0.99344	104	0.00000	0.00000	0.00000	0.26000	0.26000	0.22495
57	0.98577	0.98577	0.98577	0.99307	0.99307	0.99307	105	0.00000	0.00000	0.00000	0.26000	0.26000	0.22495
58	0.98501	0.98501	0.98501	0.99298	0.99298	0.99298	106	0.00000	0.00000	0.00000	0.26000	0.26000	0.22495
59	0.98563	0.98563	0.98563	0.99353	0.99353	0.99353	107	0.00000	0.00000	0.00000	0.26000	0.26000	0.22495
60	0.98909	0.98909 0.98925	0.35988	0.99591	0.99591	0.43692	108 109	0.00000	0.00000	0.00000	0.26000	0.26000	0.22495
61 62	0.98925	0.98925	0.60471 0.69842	0.99606	0.99606 0.99613	0.49300 0.61749	110	0.00000	0.00000	0.00000	0.26000	0.26000 0.26000	0.22495 0.22495
62	0.98925	0.98925	0.69842	0.99613	0.99613	0.61/49	110	0.00000	0.00000	0.00000	0.20000	0.26000	0.22495

V.4 Probabilidades de permanecer como activo. Hombres y Mujeres 2022-2118.

	2022-2110.												
		Hombres			Mujeres				Hombres	Ţ		Mujeres	
Edad		GT ≥3 y ≤ 9 GA y GF ≥3 y ≤24	GT > 10 GA y GF > 24	GT ≤2 GAyGF ≤2	GT ≥3 y ≤ 9 GA y GF ≥3 y ≤24	GT > 10 GA y GF > 24	Edad	GT ≤2 GAyGF ≤2	GT ≥3 y ≤ 9 GA y GF ≥3 y ≤24	GT > 10 GA y GF > 24	GT ≤2 GAyGF ≤2	GT ≥3 y ≤ 9 GA y GF ≥3 y ≤24	GT > 10 GA y GF > 24
15	0.99940	0.99940	0.99940	0.99983	0.99983	0.99983	63	0.98912	0.98912	0.71384	0.99614	0.99614	0.64908
16	0.99939	0.99939	0.99939	0.99982	0.99982	0.99982	64	0.98887	0.98887	0.74716	0.99609	0.99609	0.67890
17	0.99937	0.99937	0.99937	0.99982	0.99982	0.99982	65	0.98852	0.98852	0.50853	0.99600	0.99600	0.44736
18	0.99933	0.99933	0.99933	0.99980	0.99980	0.99980	66	0.98806	0.98806	0.60667	0.99587	0.99587	0.56948
19	0.99928	0.99928	0.99928	0.99979	0.99979	0.99979	67	0.98750	0.98750	0.63716	0.99570	0.99570	0.59374
20	0.99921	0.99921	0.99921	0.99976	0.99976	0.99976	68	0.98684	0.98684	0.66180	0.99550	0.99550	0.61322
21	0.99914	0.99914	0.99914	0.99974	0.99974	0.99974	69	0.98608	0.98608	0.68138	0.99527	0.99527	0.62851
22	0.99905	0.99905	0.99905	0.99971	0.99971	0.99971	70	0.98520	0.98520	0.69661	0.99501	0.99501	0.64019
23	0.99896	0.99896	0.99896	0.99967	0.99967	0.99967	71	0.98420	0.98420	0.70815	0.99473	0.99473	0.64877
24	0.99886	0.99886	0.99886	0.99963	0.99963	0.99963	72	0.98308	0.98308	0.71657	0.99444	0.99444	0.65473
25	0.99876	0.99876	0.99876	0.99959	0.99959	0.99959	73	0.98182	0.98182	0.72238	0.99416	0.99416	0.65850
26	0.99866	0.99866	0.99866	0.99954	0.99954	0.99954	74	0.98043	0.98043	0.72601	0.99388	0.99388	0.66049
27	0.99856	0.99856	0.99856	0.99949	0.99949	0.99949	75	0.97888	0.97888	0.72784	0.99364	0.99364	0.66110
28	0.99846	0.99846	0.99846	0.99943	0.99943	0.99943	76	0.97718	0.97718	0.72825	0.99343	0.99343	0.66068
29	0.99836	0.99836	0.99836	0.99937	0.99937	0.99937	77	0.97532	0.97532	0.72756	0.99329	0.99329	0.65962
30	0.99826	0.99826	0.99826	0.99930	0.99930	0.99930	78	0.97327	0.97327	0.72607	0.99321	0.99321	0.65827
31	0.99816	0.99816	0.99816	0.99924	0.99924	0.99924	79	0.97099	0.97099	0.72407	0.99322	0.99322	0.65701
32	0.99806	0.99806	0.99806	0.99916	0.99916	0.99916	80	0.96843	0.96843	0.72182	0.99332	0.99332	0.65619
33	0.99795	0.99795	0.99795	0.99909	0.99909	0.99909	81	0.96548	0.96548	0.71954	0.99352	0.99352	0.65618
34	0.99783	0.99783	0.99783	0.99900	0.99900	0.99900	82	0.96197	0.96197	0.71737	0.99380	0.99380	0.65732
35	0.99770	0.99770	0.99770	0.99892	0.99892	0.99892	83	0.95766	0.95766	0.71537	0.99416	0.99416	0.65996
36	0.99756	0.99756	0.99756	0.99882	0.99882	0.99882	84	0.95215	0.95215	0.71345	0.99456	0.99456	0.66439
37	0.99741	0.99741	0.99741	0.99871	0.99871	0.99871	85	0.94490	0.94490	0.71133	0.99496	0.99496	0.67088
38	0.99724	0.99724	0.99724	0.99860	0.99860	0.99860	86	0.93513	0.93513	0.70845	0.99529	0.99529	0.67964
39	0.99704	0.99704	0.99704	0.99847	0.99847	0.99847	87	0.92160	0.92160	0.70375	0.99544	0.99544	0.69078
40	0.99683	0.99683	0.99683	0.99833	0.99833	0.99833	88	0.90288	0.90288	0.69590	0.99520	0.99520	0.70424
41	0.99658	0.99658	0.99658	0.99818	0.99818	0.99818	89	0.87644	0.87644	0.68238	0.99416	0.99416	0.71966
42	0.99630	0.99630	0.99630	0.99801	0.99801	0.99801	90	0.83898	0.83898	0.65978	0.99134	0.99134	0.73597
43	0.99598	0.99598	0.99598	0.99782	0.99782	0.99782	91	0.78602	0.78602	0.62338	0.98405	0.98405	0.75026
44	0.99562	0.99562	0.99562	0.99761	0.99761	0.99761	92	0.71222	0.71222	0.56746	0.96435	0.96435	0.75420
45	0.99520	0.99520	0.99520	0.99737	0.99737	0.99737	93	0.61290	0.61290	0.48684	0.90805	0.90805	0.72298
46	0.99473	0.99473	0.99473	0.99712	0.99712	0.99712	94	0.48765	0.48765	0.38051	0.75788	0.75788	0.59861
47	0.99419	0.99419	0.99419	0.99683	0.99683	0.99683	95	0.34508	0.34508	0.25642	0.50132	0.50132	0.36771
48	0.99359	0.99359	0.99359	0.99652	0.99652	0.99652	96	0.20404	0.20404	0.13277	0.32112	0.32112	0.21211
49	0.99291	0.99291	0.99291	0.99619	0.99619	0.99619	97	0.08585	0.08585	0.03033	0.26944	0.26944	0.18314
50	0.99217	0.99217	0.99217	0.99583	0.99583	0.99583	98	0.00237	0.00237	0.00000	0.26102	0.26102	0.19487
51	0.99135	0.99135	0.99135	0.99544	0.99544	0.99544	99	0.00000	0.00000	0.00000	0.26007	0.26007	0.21106
52	0.99046	0.99046	0.99046	0.99505	0.99505	0.99505	100	0.00000	0.00000	0.00000	0.26000	0.26000	0.22495
53	0.98953	0.98953	0.98953	0.99464	0.99464	0.99464	101	0.00000	0.00000	0.00000	0.26000	0.26000	0.22495
54	0.98858	0.98858	0.98858	0.99425	0.99425	0.99425	102	0.00000	0.00000	0.00000	0.26000	0.26000	0.22495
55	0.98764	0.98764	0.98764	0.99387	0.99387	0.99387	103	0.00000	0.00000	0.00000	0.26000	0.26000	0.22495
56	0.98644	0.98644	0.98644	0.99344	0.99344	0.99344	104	0.00000	0.00000	0.00000	0.26000	0.26000	0.22495
57	0.98577	0.98577	0.98577	0.99307	0.99307	0.99307	105	0.00000	0.00000	0.00000	0.26000	0.26000	0.22495
58	0.98501	0.98501	0.98501	0.99298	0.99298	0.99298	106	0.00000	0.00000	0.00000	0.26000	0.26000	0.22495
59	0.98563	0.98563	0.98563	0.99353	0.99353	0.99353	107	0.00000	0.00000	0.00000	0.26000	0.26000	0.22495
60	0.98909	0.98909	0.35988	0.99591	0.99591	0.43692	108	0.00000	0.00000	0.00000	0.26000	0.26000	0.22495
61	0.98925	0.98925	0.60471	0.99606	0.99606	0.43092	109	0.00000	0.00000	0.00000	0.26000	0.26000	0.22495
62	0.98925	0.98925	0.69842	0.99613	0.99613	0.49300	110	0.00000	0.00000	0.00000	0.26000	0.26000	0.22495
	3.33323	0.50525	0.030-2	0.55015	0.55015	0.017-75		3.00000	0.00000	0.00000	0.20000	5.25000	0.22733

V.5 Probabilidades de salida de la actividad laboral a causa de una invalidez. Hombres y Mujeres 2019.

		Hem					-				Ham			1	14		
		ноп	nbres Cesantia	Т		Mu	eres Cesantia				НОП	nbres Cesantía			Mu	jeres Cesantia	
Edad	Invalidez	Muerte IV		Vejez	Invalidez	Muerte IV		Vejez	Edad	Invalidez	Muerte IV		Vejez	Invalidez	Muerte IV		Vejez
			en edad			0.0000757	en edad			0.003770.05	0.00000/5	en edad		0.000777.00	0.0005550	en edad	
15				0.0000000				0.0000000	63	0.0017965	0.0066245		0.0000000	0.0023760	0.0005562	0.3491009	0.0000000
16	0.0000117	0.0000899	0.0000000	0.0000000	0.0000064	0.0000433	0.0000000	0.0000000	64	0.0018065	0.0068283	0.2411396	0.0000000	0.0024485	0.0005615	0.3191224	0.0000000
17	0.0000189	0.0001247	0.0000000	0.0000000	0.0000105	0.0000522	0.0000000	0.0000000	65	0.0018615	0.0071017	0.0000000	0.4792638	0.0025545	0.0005819	0.0000000	0.5412198
18	0.0000289	0.0001666	0.0000000	0.0000000	0.0000164	0.0000620	0.0000000	0.0000000	66	0.0019595	0.0074424	0.0000000	0.3805379	0.0026928	0.0006138	0.0000000	0.4252987
19	0.0000422	0.0002149	0.0000000	0.0000000	0.0000246	0.0000725	0.0000000	0.0000000	67	0.0021003	0.0078498	0.0000000	0.3495283	0.0028624	0.0006542	0.0000000	0.4008941
20	0.0000589	0.0002686	0.0000000	0.0000000	0.0000355	0.0000837	0.0000000	0.0000000	68	0.0022851	0.0083248	0.0000000	0.3242545	0.0030620	0.0007002	0.0000000	0.3812340
21	0.0000791	0.0003263	0.0000000	0.0000000	0.0000493	0.0000955	0.0000000	0.0000000	69	0.0025155	0.0088699	0.0000000	0.3039419	0.0032896	0.0007485	0.0000000	0.3657242
22	0.0001026	0.0003865	0.0000000	0.0000000	0.0000664	0.0001078	0.0000000	0.0000000	70	0.0027929	0.0094891	0.0000000	0.2878567	0.0035424	0.0007956	0.0000000	0.3538042
23			0.0000000			0.0001204	0.0000000	0.0000000	71	0.0031177		0.0000000	0.2753385	0.0038159		0.0000000	0.3449604
						0.0001204	0.0000000							0.0030133			
24			0.0000000		0.0001103			0.0000000	72	0.0034880		0.0000000				0.0000000	0.3387257
25			0.0000000		0.0001370		0.0000000	0.0000000	73	0.0038984		0.0000000		0.0043967	0.0008985	0.0000000	0.3346739
26	0.0002206	0.0006210	0.0000000	0.0000000	0.0001668	0.0001595	0.0000000	0.0000000	74	0.0043392	0.0128733	0.0000000	0.2537407	0.0046841	0.0009126	0.0000000	0.3324102
27	0.0002538	0.0006728	0.0000000	0.0000000	0.0001993	0.0001728	0.0000000	0.0000000	75	0.0047947	0.0140188	0.0000000	0.2503639	0.0049524	0.0009157	0.0000000	0.3315624
28	0.0002879	0.0007211	0.0000000	0.0000000	0.0002344	0.0001860	0.0000000	0.0000000	76	0.0052431	0.0153325	0.0000000	0.2482620	0.0051858	0.0009092	0.0000000	0.3317719
29	0.0003228	0.0007658	0.0000000	0.0000000	0.0002720	0.0001993	0.0000000	0.0000000	77	0.0056559	0.0168534	0.0000000	0.2470942	0.0053676	0.0008957	0.0000000	0.3326866
30	0.0003586	0.0008077	0.0000000	0.0000000	0.0003121	0.0002126	0.0000000	0.0000000	78	0.0060000	0.0186341	0.0000000	0.2465321	0.0054807	0.0008787	0.0000000	0.3339559
31	0.0003958	0.0008471	0.0000000	0.0000000	0.0003547	0.0002260	0.0000000	0.0000000	79	0.0062398	0.0207453	0.0000000	0.2462540	0.0055098	0.0008625	0.0000000	0.3352273
32	0.0004347	0.0008852	0.0000000	0.0000000	0.0004000	0.0002395	0.0000000	0.0000000	80	0.0063416	0.0232832	0.0000000	0.2459404	0.0054426	0.0008520	0.0000000	0.3361456
33	0.0004762	0.0009227	0.0000000	0.0000000	0.0004484	0.0002531	0.0000000	0.0000000	81	0.0062788	0.0263790	0.0000000	0.2452733	0.0052722	0.0008525	0.0000000	0.3363539
34	0.0005210	0.0009608	0.0000000	0.0000000	0.0005004	0.0002669	0.0000000	0.0000000	82	0.0060369	0.0302141	0.0000000	0.2439378	0.0049981	0.0008708	0.0000000	0.3354967
35			0.0000000			0.0002811	0.0000000	0.0000000	83	0.0056188		0.0000000		0.0046279	0.0009160	0.0000000	0.3332250
36	0.0006252		0.0000000		0.0006178		0.0000000	0.0000000	84	0.0050462		0.0000000		0.0041767	0.0010018	0.0000000	0.3292036
37			0.0000000		0.0006850	0.0002330	0.0000000	0.0000000	85	0.0030402		0.0000000	0.2329321	0.0036666	0.0010010	0.0000000	0.3231215
38	0.0007582	0.0011421	0.0000000		0.0007594		0.0000000	0.0000000	86	0.0036097		0.0000000		0.0031245	0.0014073	0.0000000	0.3147043
39	0.0008399		0.0000000		0.0008421		0.0000000	0.0000000	87	0.0028566				0.0025794	0.0018521	0.0000000	0.3037314
40	0.0009348		0.0000000		0.0009348		0.0000000	0.0000000	88	0.0021532		0.0000000		0.0020584	0.0026601	0.0000000	0.2900564
41	0.0010454	0.0013446	0.0000000	0.0000000	0.0010391	0.0003772	0.0000000	0.0000000	89	0.0015410	0.1212813	0.0000000	0.1934994	0.0015848	0.0042294	0.0000000	0.2736320
42	0.0011747	0.0014327	0.0000000	0.0000000	0.0011568	0.0003961	0.0000000	0.0000000	90	0.0010437	0.1595674	0.0000000	0.1786763	0.0011748	0.0075517	0.0000000	0.2545370
43	0.0013263	0.0015339	0.0000000	0.0000000	0.0012898	0.0004159	0.0000000	0.0000000	91	0.0006669	0.2133100	0.0000000	0.1621590	0.0008368	0.0153399	0.0000000	0.2330030
44	0.0015038	0.0016503	0.0000000	0.0000000	0.0014403	0.0004368	0.0000000	0.0000000	92	0.0004007	0.2878353	0.0000000	0.1443214	0.0005715	0.0356682	0.0000000	0.2094344
45	0.0017112	0.0017838	0.0000000	0.0000000	0.0016102	0.0004589	0.0000000	0.0000000	93	0.0002257	0.3877606	0.0000000	0.1256659	0.0003735	0.0930518	0.0000000	0.1844145
46	0.0019528	0.0019367	0.0000000	0.0000000	0.0018015	0.0004822	0.0000000	0.0000000	94	0.0001188	0.5133904	0.0000000	0.1067964	0.0002332	0.2449075	0.0000000	0.1586883
47	0.0022326	0.0021112	0.0000000	0.0000000	0.0020159	0.0005067	0.0000000	0.0000000	95	0.0000583	0.6559571	0.0000000	0.0883693	0.0001388	0.5015424	0.0000000	0.1331155
48	0.0025539	0.0023095	0.0000000	0.0000000	0.0022545	0.0005324	0.0000000	0.0000000	96	0.0000265	0.7965812	0.0000000	0.0710291	0.0000786	0.6798330	0.0000000	0.1085933
49	0.0029191	0.0025336	0.0000000	0.0000000	0.0025177	0.0005592	0.0000000	0.0000000	97	0.0000112	0.9141195	0.0000000	0.0553351	0.0000422	0.7306870	0.0000000	0.0859582
50	0.0033281	0.0027851	0.0000000	0.0000000	0.0028044	0.0005869	0.0000000	0.0000000	98	0.0000043	0.9969867	0.0000000	0.0416977	0.0000215	0.7389752	0.0000000	0.0658864
51			0.0000000		0.0031121	0.0006155	0.0000000	0.0000000	99	0.0000016		0.0000000	0.0303371	0.0000104	0.7399177	0.0000000	0.0488147
52	0.0042615		0.0000000		0.0034359		0.0000000	0.0000000	100			0.0000000	0.0212752	0.0000047	0.7399953	0.0000000	0.0349050
53			0.0000000		0.0037683		0.0000000	0.0000000	101			0.0000000		0.0000047	0.7399953	0.0000000	0.0349050
54			0.0000000				0.0000000		102			0.0000000		0.0000047	0.7399953	0.0000000	0.0349050
								0.0000000									
55							0.0000000									0.0000000	
56							0.0000000		104							0.0000000	
57							0.0000000									0.0000000	
58	0.0070089	0.0055660	0.0000000	0.0000000	0.0051759	0.0008081	0.0000000	0.0000000	106	0.0000005	0.9999900	0.0000000	0.0212752	0.0000047	0.7399953	0.0000000	0.0349050
59	0.0060175	0.0058857	0.0000000	0.0000000	0.0046206	0.0008275	0.0000000	0.0000000	107	0.0000005	0.9999900	0.0000000	0.0212752	0.0000047	0.7399953	0.0000000	0.0349050
60	0.0021121	0.0064874	0.6877011	0.0000000	0.0023854	0.0006978	0.5982584	0.0000000	108	0.0000005	0.9999900	0.0000000	0.0212752	0.0000047	0.7399953	0.0000000	0.0349050
61	0.0019364	0.0064453	0.3851770	0.0000000	0.0023405	0.0006133	0.5049130	0.0000000	109	0.0000005	0.9999900	0.0000000	0.0212752	0.0000047	0.7399953	0.0000000	0.0349050
62	0.0018367	0.0064945	0.2913857	0.0000000	0.0023390	0.0005708	0.3807990	0.0000000	110	0.0000005	0.9999900	0.0000000	0.0212752	0.0000047	0.7399953	0.0000000	0.0349050

V.6 Probabilidades de salida de la actividad laboral a causa de una invalidez. Hombres y Mujeres 2020.

		Hom	hres			Mu	jeres				Hon	nbres			Mui	eres	
Edad			Cesantia				Cesantia		Edad			Cesantia			1114	Cesantia	
Luuu	Invalidez	Muerte IV	en edad	Vejez	Invalidez	Muerte IV	en edad	Vejez	Luuu	Invalidez	Muerte IV	en edad	Vejez	Invalidez	Muerte IV	en edad	Vejez
15	0.0000069	0.0000626	0.0000000	0.0000000	0.0000038	0.0000349	0.0000000	0.00000000	63	0.0017592	0.0065567		0.0000000	0.0025189	0.0005460		0.0000000
16	0.0000119		0.0000000		0.0000066	0.0000428	0.0000000	0.00000000	64	0.0017690	0.0067584		0.0000000	0.0025957	0.0005512	0.3171932	0.0000000
-										0.0017050							0.000000
17	0.0000191		0.0000000		0.0000108	0.0000516	0.0000000	0.0000000	65	0.0018229		0.0000000	0.4799820	0.0027081	0.0005712	0.0000000	0.5486417
18	0.0000293		0.0000000		0.0000169	0.0000613	0.0000000	0.0000000	66	0.0019188		0.0000000	0.3813883	0.0028547		0.0000000	0.4263973
19	0.0000427	0.0002162	0.0000000	0.0000000	0.0000254	0.0000717	0.0000000	0.0000000	67	0.0020567	0.0077695	0.0000000	0.3503473	0.0030344	0.0006422	0.0000000	0.4019684
20	0.0000597	0.0002703	0.0000000	0.0000000	0.0000366	0.0000828	0.0000000	0.0000000	68	0.0022377	0.0082397	0.0000000	0.3250430	0.0032459	0.0006873	0.0000000	0.3822853
21	0.0000801	0.0003284	0.0000000	0.0000000	0.0000509	0.0000945	0.0000000	0.0000000	69	0.0024633	0.0087793	0.0000000	0.3047026	0.0034872	0.0007347	0.0000000	0.3667551
22	0.0001039	0.0003889	0.0000000	0.0000000	0.0000685	0.0001066	0.0000000	0.0000000	70	0.0027350	0.0093923	0.0000000	0.2885934	0.0037551	0.0007810	0.0000000	0.3548182
23	0.0001306	0.0004502	0.0000000	0.0000000	0.0000894	0.0001191	0.0000000	0.0000000	71	0.0030531	0.0100848	0.0000000	0.2760552	0.0040448	0.0008229	0.0000000	0.3459611
24	0.0001597	0.0005107	0.0000000	0,0000000	0.0001138	0.0001319	0.0000000	0.0000000	72	0.0034157	0.0108654	0.0000000	0.2665078	0.0043496	0.0008573	0.0000000	0.3397167
25	0.0001908		0.0000000		0.0001414	0.0001448	0.0000000	0.00000000	73	0.0038177		0.0000000	0.2594446	0.0046602	0.0008820	0.0000000	0.3356584
-																	
26	0.0002233		0.0000000		0.0001720	0.0001578	0.0000000	0.0000000	74	0.0042494		0.0000000		0.0049647	0.0008958	0.0000000	0.3333910
27	0.0002569		0.0000000		0.0002056	0.0001709	0.0000000	0.0000000	75	0.0046955		0.0000000	0.2510375	0.0052489	0.0008989	0.0000000	0.3325418
28	0.0002914	0.0007255	0.0000000	0.0000000	0.0002418	0.0001840	0.0000000	0.0000000	76	0.0051346	0.0151768	0.0000000	0.2489318	0.0054962	0.0008925	0.0000000	0.3327517
29	0.0003267	0.0007706	0.0000000	0.0000000	0.0002806	0.0001972	0.0000000	0.0000000	77	0.0055390	0.0166825	0.0000000	0.2477618	0.0056887	0.0008792	0.0000000	0.3336679
30	0.0003630	0.0008127	0.0000000	0.0000000	0.0003219	0.0002104	0.0000000	0.0000000	78	0.0058760	0.0184455	0.0000000	0.2471987	0.0058086	0.0008625	0.0000000	0.3349393
31	0.0004006	0.0008524	0.0000000	0.0000000	0.0003659	0.0002236	0.0000000	0.0000000	79	0.0061109	0.0205358	0.0000000	0.2469201	0.0058394	0.0008467	0.0000000	0.3362127
32	0.0004400	0.0008906	0.0000000	0.0000000	0.0004126	0.0002369	0.0000000	0.0000000	80	0.0062107	0.0230486	0.0000000	0.2466059	0.0057682	0.0008363	0.0000000	0.3371325
33	0.0004820	0.0009284	0.0000000	0.0000000	0.0004626	0.0002504	0.0000000	0.0000000	81	0.0061491	0.0261139	0.0000000	0.2459376	0.0055877	0.0008368	0.0000000	0.3373411
34	0.0005274	0.0009667	0.0000000	0,0000000	0.0005162	0.0002641	0.0000000	0.0000000	82	0.0059122	0.0299115	0.0000000	0.2445996	0.0052973	0.0008548	0.0000000	0.3364826
35	0.0005772		0.0000000		0.0005742	0.0002781	0.0000000	0.0000000	83	0.0055026		0.0000000		0.0049051	0.0008991	0.0000000	0.3342071
36			0.0000000		0.0003742			0.0000000	84	0.0033020		0.0000000		0.0043031	0.0009834	0.0000000	0.3301792
37					0.0006373								0.2335731	0.0038866			0.3240868
	0.0006957		0.0000000			0.0003073	0.0000000	0.0000000	85			0.0000000			0.0011303	0.0000000	
38	0.0007675	0.0011491	0.0000000		0.0007833	0.0003227	0.0000000	0.0000000	86	0.0035349		0.0000000	0.2266817	0.0033122	0.0013815	0.0000000	0.3156550
39	0.0008502		0.0000000		0.0008687	0.0003387	0.0000000	0.0000000	87	0.0027974		0.0000000	0.2178497	0.0027344	0.0018181	0.0000000	0.3046621
40	0.0009462	0.0012758	0.0000000		0.0009643	0.0003555	0.0000000	0.0000000	88	0.0021086	0.0930825	0.0000000		0.0021823	0.0026113	0.0000000	0.2909609
41	0.0010581	0.0013529	0.0000000	0.0000000	0.0010719	0.0003732	0.0000000	0.0000000	89	0.0015090		0.0000000	0.1940586	0.0016803	0.0041520	0.0000000	0.2745031
42	0.0011891	0.0014416	0.0000000	0.0000000	0.0011933	0.0003918	0.0000000	0.0000000	90	0.0010220	0.1581622	0.0000000	0.1792020	0.0012456	0.0074141	0.0000000	0.2553665
43	0.0013425	0.0015434	0.0000000	0.0000000	0.0013305	0.0004114	0.0000000	0.0000000	91	0.0006530	0.2115387	0.0000000	0.1626454	0.0008872	0.0150633	0.0000000	0.2337822
44	0.0015221	0.0016605	0.0000000	0.0000000	0.0014857	0.0004321	0.0000000	0.0000000	92	0.0003924	0.2856459	0.0000000	0.1447633	0.0006060	0.0350429	0.0000000	0.2101543
45	0.0017321	0.0017949	0.0000000	0.0000000	0.0016610	0.0004540	0.0000000	0.0000000	93	0.0002210	0.3851742	0.0000000	0.1260590	0.0003961	0.0915513	0.0000000	0.1850667
46	0.0019766	0.0019487	0.0000000	0.0000000	0.0018583	0.0004770	0.0000000	0.0000000	94	0.0001163	0.5105719	0.0000000	0.1071375	0.0002473	0.2418738	0.0000000	0.1592658
47	0.0022598	0.0021243	0.0000000	0,0000000	0.0020794	0.0005013	0.0000000	0.0000000	95	0.0000571	0.6532364	0.0000000	0.0886573	0.0001471	0.4985307	0.0000000	0.1336134
48	0.0025851		0.0000000		0.0023256	0.0005267	0.0000000	0.0000000	96	0.0000260		0.0000000	0.0712648	0.0000833	0.6787984	0.0000000	0.1090100
49	0.0029546		0.0000000		0.0025970			0.0000000	97	0.00000110		0.0000000	0.0555218	0.0000448	0.7305146	0.0000000	0.0862958
50			0.0000000		0.0023370	0.0005806	0.0000000	0.0000000	98			0.0000000	0.0418404	0.0000448	0.7389561	0.0000000	0.0661503
51			0.0000000		0.0032101		0.0000000	0.0000000	99			0.0000000		0.0000110	0.7399162	0.0000000	0.0490136
52	0.0043133	0.0033941	0.0000000		0.0035440	0.0006378	0.0000000	0.0000000	100			0.0000000	0.0213495	0.0000050	0.7399952	0.0000000	0.0350491
53	0.0048235	0.0037312	0.0000000		0.0038868	0.0006669	0.0000000	0.0000000	101			0.0000000	0.0213495	0.0000050	0.7399952	0.0000000	0.0350491
54	0.0053346	0.0040918	0.0000000	0.0000000	0.0042273	0.0006959	0.0000000	0.0000000	102	0.0000005	0.9999900	0.0000000	0.0213495	0.0000050	0.7399952	0.0000000	0.0350491
55	0.0058195	0.0044698	0.0000000	0.0000000	0.0045511	0.0007243	0.0000000	0.0000000	103	0.0000005	0.9999900	0.0000000	0.0213495	0.0000050	0.7399952	0.0000000	0.0350491
56	0.0065564	0.0048562	0.0000000	0.0000000	0.0049373	0.0007515	0.0000000	0.0000000	104	0.0000005	0.9999900	0.0000000	0.0213495	0.0000050	0.7399952	0.0000000	0.0350491
57	0.0067668	0.0052384	0.0000000	0.0000000	0.0052782	0.0007768	0.0000000	0.0000000	105	0.0000005	0.9999900	0.0000000	0.0213495	0.0000050	0.7399952	0.0000000	0.0350491
58	0.0070938	0.0056002	0.0000000	0.0000000	0.0053383	0.0007994	0.0000000	0.0000000	106	0.0000005	0.9999900	0.0000000	0.0213495	0.0000050	0.7399952	0.0000000	0.0350491
59	0.0060904	0.0059219	0.0000000	0.0000000	0.0047656	0.0008186	0.0000000	0.0000000	107	0.0000005	0.9999900	0.0000000	0.0213495	0.0000050	0.7399952	0.0000000	0.0350491
60	0.0020683	0.0064210	0.6292128		0.0025289	0.0006849	0.5589903	0.0000000	108			0.0000000	0.0213495	0.0000050	0.7399952	0.0000000	0.0350491
61	0.0018962	0.0063793	0.3845403		0.0024813	0.0006021	0.5030635	0.0000000	109			0.0000000	0.0213495	0.0000050	0.7399952	0.00000000	0.0350491
62			0.2908307			0.0005604		0.0000000	110			0.0000000		0.0000050		0.0000000	0.0350491
02	0.001/303	v.vv 04 200	0.2300307	0.00000000	0.0024131	0.0003004	0.2700413	0.00000000	110	0.0000000	0.000000	0.00000000	0.0213433	0.00000000	U.133333Z	0.00000000	0.0300431

V.7 Probabilidades de salida de la actividad laboral a causa de una invalidez. Hombres y Mujeres 2021.

Edad	Invalidez	Hom	Cesantia				eres					nbres	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			eres	
Luuu	Invalidez						Cesantía		Edad			Cesantía				Cesantía	
	mvanacz	Muerte IV	en edad	Vejez	Invalidez	Muerte IV	en edad	Vejez	Ludu	Invalidez	Muerte IV	en edad	Vejez	Invalidez	Muerte IV	en edad	Vejez
15	0.0000060	0.0000626	0.0000000	0.0000000	0.0000038	0.0000349	0.0000000	0.0000000	63	0.0017502	0.0065567		0.0000000	0.0025189	0.0005460	0.3470548	0.0000000
- 1																	
16	0.0000119		0.0000000		0.0000066	0.0000428	0.0000000	0.0000000	64	0.0017690	0.0067584		0.0000000	0.0025957	0.0005512	0.3171932	0.0000000
17	0.0000191	0.0001255	0.0000000	0.0000000	0.0000108	0.0000516	0.0000000	0.0000000	65	0.0018229	0.0070290	0.0000000	0.4799820	0.0027081	0.0005712	0.0000000	0.5486417
18	0.0000293	0.0001676	0.0000000	0.0000000	0.0000169	0.0000613	0.0000000	0.0000000	66	0.0019188	0.0073663	0.0000000	0.3813883	0.0028547	0.0006025	0.0000000	0.4263973
19	0.0000427	0.0002162	0.0000000	0.0000000	0.0000254	0.0000717	0.0000000	0.0000000	67	0.0020567	0.0077695	0.0000000	0.3503473	0.0030344	0.0006422	0.0000000	0.4019684
20	0.0000597	0.0002703	0.0000000	0.0000000	0.0000366	0.0000828	0.0000000	0.0000000	68	0.0022377	0.0082397	0.0000000	0.3250430	0.0032459	0.0006873	0.0000000	0.3822853
21	0.0000801	0.0003284	0.0000000	0.0000000	0.0000509	0.0000945	0.0000000	0.0000000	69	0.0024633	0.0087793	0.0000000	0.3047026	0.0034872	0.0007347	0.0000000	0.3667551
22			0.0000000		0.0000685	0.0001066	0.00000000	0.00000000	70	0.0027350		0.0000000		0.0037551		0.0000000	0.3548182
									71							0.0000000	0.3459611
23			0.0000000		0.0000894	0.0001191		0.0000000		0.0030531		0.0000000		0.0040448			
24	0.0001597		0.0000000		0.0001138	0.0001319		0.0000000	72	0.0034157		0.0000000		0.0043496		0.0000000	0.3397167
25	0.0001908	0.0005692	0.0000000	0.0000000	0.0001414	0.0001448	0.0000000	0.0000000	73	0.0038177		0.0000000		0.0046602	0.0008820	0.0000000	0.3356584
26	0.0002233	0.0006248	0.0000000	0.0000000	0.0001720	0.0001578	0.0000000	0.0000000	74	0.0042494	0.0127423	0.0000000	0.2544204	0.0049647	0.0008958	0.0000000	0.3333910
27	0.0002569	0.0006770	0.0000000	0.0000000	0.0002056	0.0001709	0.0000000	0.0000000	75	0.0046955	0.0138763	0.0000000	0.2510375	0.0052489	0.0008989	0.0000000	0.3325418
28	0.0002914	0.0007255	0.0000000	0.0000000	0.0002418	0.0001840	0.0000000	0.0000000	76	0.0051346	0.0151768	0.0000000	0.2489318	0.0054962	0.0008925	0.0000000	0.3327517
29	0.0003267	0.0007706	0.0000000	0.0000000	0.0002806	0.0001972	0.0000000	0.0000000	77	0.0055390	0.0166825	0.0000000	0.2477618	0.0056887	0.0008792	0.0000000	0.3336679
30	0.0003630	0.0008127	0.0000000	0.0000000	0.0003219	0.0002104	0.0000000	0.0000000	78	0.0058760	0.0184455	0.0000000	0.2471987	0.0058086	0.0008625	0.0000000	0.3349393
31	0.0004006	0.0008524	0.0000000	0.0000000	0.0003659	0.0002236	0.00000000	0.0000000	79	0.0061109	0.0205358	0.0000000	0.2469201	0.0058394	0.0008467	0.0000000	0.3362127
			0.0000000				0.0000000	0.0000000	80	0.0062107		0.0000000		0.0057682		0.0000000	0.3371325
- 1																	
			0.0000000		0.0004626		0.0000000	0.00000000	81	0.0061491		0.0000000		0.0055877		0.0000000	0.3373411
- 1			0.0000000		0.0005162	0.0002641	0.0000000	0.0000000	82	0.0059122		0.0000000		0.0052973	0.0008548	0.0000000	0.3364826
35	0.0005772	0.0010068	0.0000000	0.0000000	0.0005742	0.0002781	0.0000000	0.0000000	83	0.0055026	0.0346930	0.0000000	0.2422839	0.0049051	0.0008991	0.0000000	0.3342071
36	0.0006328	0.0010497	0.0000000	0.0000000	0.0006373	0.0002924	0.0000000	0.0000000	84	0.0049418	0.0408143	0.0000000	0.2386976	0.0044271	0.0009834	0.0000000	0.3301792
37	0.0006957	0.0010967	0.0000000	0.0000000	0.0007066	0.0003073	0.0000000	0.0000000	85	0.0042686	0.0487857	0.0000000	0.2335731	0.0038866	0.0011303	0.0000000	0.3240868
38	0.0007675	0.0011491	0.0000000	0.0000000	0.0007833	0.0003227	0.0000000	0.0000000	86	0.0035349	0.0593476	0.0000000	0.2266817	0.0033122	0.0013815	0.0000000	0.3156550
39	0.0008502	0.0012083	0.0000000	0.0000000	0.0008687	0.0003387	0.0000000	0.0000000	87	0.0027974	0.0735829	0.0000000	0.2178497	0.0027344	0.0018181	0.0000000	0.3046621
40	0.0009462	0.0012758	0.0000000	0.0000000	0.0009643	0.0003555	0.0000000	0.0000000	88	0.0021086	0.0930825	0.0000000	0.2069772	0.0021823	0.0026113	0.0000000	0.2909609
41	0.0010581	0.0013529	0.0000000	0.0000000	0.0010719	0.0003732	0.0000000	0.0000000	89	0.0015090	0.1201699	0.0000000	0.1940586	0.0016803	0.0041520	0.0000000	0.2745031
42	0.0011891	0.0014416	0.0000000	0.0000000	0.0011933	0.0003918	0.0000000	0.0000000	90	0.0010220	0.1581622	0.0000000	0.1792020	0.0012456	0.0074141	0.0000000	0.2553665
43	0.0013425	0.0015434	0.0000000	0.0000000	0.0013305	0.0004114	0.0000000	0.0000000	91	0.0006530	0.2115387	0.0000000	0.1626454	0.0008872	0.0150633	0.0000000	0.2337822
44	0.0015221		0.0000000		0.0014857	0.0004321	0.0000000	0.0000000	92	0.0003924	0.2856459	0.0000000	0.1447633	0.0006060	0.0350429	0.0000000	0.2101543
45	0.0017321		0.0000000		0.0016610		0.0000000	0.0000000	93	0.0002210		0.0000000	0.1260590	0.0003961	0.0915513	0.0000000	0.1850667
46	0.001/321		0.0000000		0.0018583			0.0000000	94	0.0002210		0.0000000	0.1071375	0.0003301	0.2418738	0.0000000	0.1592658
	0.0022598		0.0000000		0.0020794	0.0005013	0.0000000	0.00000000	95	0.0000571		0.0000000	0.0886573	0.0001471	0.4985307	0.0000000	0.1336134
48	0.0025851		0.0000000		0.0023256	0.0005267	0.0000000	0.00000000	96	0.0000260		0.0000000		0.0000833	0.6787984	0.0000000	0.1090100
	0.0029546	0.0025493	0.0000000	0.0000000	0.0025970	0.0005532	0.0000000	0.0000000	97	0.0000110	0.9125587	0.0000000	0.0555218	0.0000448	0.7305146	0.0000000	0.0862958
50	0.0033686	0.0028023	0.0000000	0.0000000	0.0028927	0.0005806	0.0000000	0.0000000	98	0.0000043	0.9960679	0.0000000	0.0418404	0.0000228	0.7389561	0.0000000	0.0661503
51	0.0038240	0.0030839	0.0000000	0.0000000	0.0032101	0.0006089	0.0000000	0.0000000	99	0.0000015	0.9999900	0.0000000	0.0304422	0.0000110	0.7399162	0.0000000	0.0490136
52	0.0043133	0.0033941	0.0000000	0.0000000	0.0035440	0.0006378	0.0000000	0.0000000	100	0.0000005	0.9999900	0.0000000	0.0213495	0.0000050	0.7399952	0.0000000	0.0350491
53	0.0048235	0.0037312	0.0000000	0.0000000	0.0038868	0.0006669	0.0000000	0.0000000	101	0.0000005	0.9999900	0.0000000	0.0213495	0.0000050	0.7399952	0.0000000	0.0350491
54	0.0053346	0.0040918	0.0000000	0.0000000	0.0042273	0.0006959	0.0000000	0.0000000	102	0.0000005	0.9999900	0.0000000	0.0213495	0.0000050	0.7399952	0.0000000	0.0350491
55	0.0058195	0.0044698	0.0000000	0.0000000	0.0045511	0.0007243	0.0000000	0.0000000	103	0.0000005	0.9999900	0.0000000	0.0213495	0.0000050	0.7399952	0.0000000	0.0350491
56	0.0065564	0.0048562	0.0000000	0.0000000	0.0049373	0.0007515	0.0000000	0.0000000	104	0.0000005	0.9999900	0.0000000	0.0213495	0.0000050	0.7399952	0.0000000	0.0350491
					0.0052782				105			0.0000000		0.0000050		0.0000000	0.0350491
					0.0053383				106			0.0000000		0.0000050		0.0000000	0.0350491
					0.0047656				107			0.0000000		0.0000050		0.0000000	0.0350491
				0.0000000				0.0000000	107			0.0000000					0.0350491
	0.0020683													0.0000050		0.0000000	
					0.0024813			0.0000000	109			0.0000000		0.0000050		0.0000000	0.0350491
62	0.001/985	U.UU64280	0.2908307	0.00000000	0.0024797	0.0005604	0.3786413	0.0000000	110	0.0000005	U.9999900	0.0000000	0.0213495	0.0000050	U.7399952	0.0000000	0.0350491

V.8 Probabilidades de salida de la actividad laboral a causa de una invalidez. Hombres y Mujeres 2022-2118.

		Hom	bres			Mu	ieres				Hon	nbres			Mui	ieres	
Edad			Cesantía				Cesantía		Edad			Cesantia				Cesantía	
	Invalidez	Muerte IV	en edad	Vejez	Invalidez	Muerte IV	en edad	Vejez		Invalidez	Muerte IV	en edad	Vejez	Invalidez	Muerte IV	en edad	Vejez
15	0.0000069	0.0000626	0.0000000	0.0000000	0.0000038	0.0000349	0.0000000	0.0000000	63	0.0017592	0.0065567		0.0000000	0.0025189	0.0005460		0.0000000
16	0.0000119	0.0000905	0.0000000	0.0000000	0.0000066	0.0000428	0.0000000	0.0000000	64	0.0017690	0.0067584	0.2417087	0.0000000	0.0025957	0.0005512	0.3171932	0.0000000
17	0.0000191	0.0001255	0.0000000	0.0000000	0.0000108	0.0000516	0.0000000	0.0000000	65	0.0018229	0.0070290	0.0000000	0.4799820	0.0027081	0.0005712	0.0000000	0.5486417
18	0.0000293	0.0001676	0.0000000	0.0000000	0.0000169	0.0000613	0.0000000	0.0000000	66	0.0019188	0.0073663	0.00000000	0.3813883	0.0028547	0.0006025	0.0000000	0.4263973
19	0.0000427		0.0000000		0.0000254	0.0000717	0.0000000	0.00000000	67	0.0020567		0.0000000	0.3503473	0.0030344		0.0000000	0.4019684
20	0.0000597		0.0000000		0.0000366	0.0000828	0.0000000	0.00000000	68	0.0022377		0.0000000	0.3250430	0.0032459		0.0000000	0.3822853
21	0.00000357		0.0000000			0.0000026	0.0000000	0.0000000	69	0.0024633		0.0000000	0.3047026	0.0034872		0.0000000	0.3667551
22	0.0000000				0.0000303		0.0000000	0.0000000	70			0.0000000					0.3548182
			0.0000000			0.0001066				0.0027350			0.2885934	0.0037551	0.0007810	0.0000000	
23	0.0001306		0.0000000			0.0001191	0.0000000	0.0000000	71	0.0030531		0.0000000	0.2760552	0.0040448		0.0000000	0.3459611
24	0.0001597		0.0000000		0.0001138	0.0001319	0.0000000	0.00000000	72	0.0034157		0.0000000	0.2665078	0.0043496		0.0000000	0.3397167
25	0.0001908		0.0000000			0.0001448	0.0000000	0.00000000	73	0.0038177		0.0000000				0.0000000	0.3356584
26	0.0002233		0.0000000		0.0001720	0.0001578	0.0000000	0.0000000	74	0.0042494		0.0000000		0.0049647		0.0000000	0.3333910
27	0.0002569		0.0000000		0.0002056	0.0001709	0.0000000	0.0000000	75	0.0046955	0.0138763	0.0000000	0.2510375	0.0052489	0.0008989	0.0000000	0.3325418
28	0.0002914	0.0007255	0.0000000	0.0000000	0.0002418	0.0001840	0.0000000	0.0000000	76	0.0051346	0.0151768	0.0000000	0.2489318	0.0054962	0.0008925	0.0000000	0.3327517
29	0.0003267	0.0007706	0.0000000	0.0000000	0.0002806	0.0001972	0.0000000	0.0000000	77	0.0055390	0.0166825	0.0000000	0.2477618	0.0056887	0.0008792	0.0000000	0.3336679
30	0.0003630	0.0008127	0.0000000	0.0000000	0.0003219	0.0002104	0.0000000	0.0000000	78	0.0058760	0.0184455	0.0000000	0.2471987	0.0058086	0.0008625	0.0000000	0.3349393
31	0.0004006	0.0008524	0.0000000	0.0000000	0.0003659	0.0002236	0.0000000	0.0000000	79	0.0061109	0.0205358	0.0000000	0.2469201	0.0058394	0.0008467	0.0000000	0.3362127
32	0.0004400	0.0008906	0.0000000	0.0000000	0.0004126	0.0002369	0.0000000	0.0000000	80	0.0062107	0.0230486	0.0000000	0.2466059	0.0057682	0.0008363	0.0000000	0.3371325
33	0.0004820	0.0009284	0.0000000	0.0000000	0.0004626	0.0002504	0.0000000	0.0000000	81	0.0061491	0.0261139	0.0000000	0.2459376	0.0055877	0.0008368	0.0000000	0.3373411
34	0.0005274	0.0009667	0.0000000	0.0000000	0.0005162	0.0002641	0.0000000	0.0000000	82	0.0059122	0.0299115	0.0000000	0.2445996	0.0052973	0.0008548	0.0000000	0.3364826
35	0.0005772	0.0010068	0.0000000	0.0000000	0.0005742	0.0002781	0.0000000	0.0000000	83	0.0055026	0.0346930	0.0000000	0.2422839	0.0049051	0.0008991	0.0000000	0.3342071
36	0.0006328	0.0010497	0.0000000	0.0000000	0.0006373	0.0002924	0.0000000	0.0000000	84	0.0049418	0.0408143	0.0000000	0.2386976	0.0044271	0.0009834	0.0000000	0.3301792
37	0.0006957	0.0010967	0.0000000	0.0000000	0.0007066	0.0003073	0.0000000	0.0000000	85	0.0042686	0.0487857	0.0000000	0.2335731	0.0038866	0.0011303	0.0000000	0.3240868
38	0.0007675	0.0011491	0.0000000	0.0000000	0.0007833	0.0003227	0.0000000	0.0000000	86	0.0035349	0.0593476	0.0000000	0.2266817	0.0033122	0.0013815	0.0000000	0.3156550
39	0.0008502	0.0012083	0.0000000	0.0000000	0.0008687	0.0003387	0.0000000	0.0000000	87	0.0027974	0.0735829	0.0000000	0.2178497	0.0027344	0.0018181	0.0000000	0.3046621
40	0.0009462	0.0012758	0.0000000	0.0000000	0.0009643	0.0003555	0.0000000	0.0000000	88	0.0021086	0.0930825	0.0000000	0.2069772	0.0021823	0.0026113	0.0000000	0.2909609
41	0.0010581	0.0013529	0.0000000	0.0000000	0.0010719	0.0003732	0.0000000	0.0000000	89	0.0015090	0.1201699	0.0000000	0.1940586	0.0016803	0.0041520	0.0000000	0.2745031
42	0.0011891	0.0014416	0.0000000	0.0000000	0.0011933	0.0003918	0.0000000	0.0000000	90	0.0010220	0.1581622	0.0000000	0.1792020	0.0012456	0.0074141	0.0000000	0.2553665
43	0.0013425	0.0015434	0.0000000	0.0000000	0.0013305	0.0004114	0.0000000	0.0000000	91	0.0006530	0.2115387	0.0000000	0.1626454	0.0008872	0.0150633	0.0000000	0.2337822
44	0.0015221	0.0016605	0.0000000	0.0000000	0.0014857	0.0004321	0.0000000	0.0000000	92	0.0003924	0.2856459	0.0000000	0.1447633	0.0006060	0.0350429	0.0000000	0.2101543
45	0.0017321	0.0017949	0.0000000	0.0000000	0.0016610	0.0004540	0.0000000	0.0000000	93	0.0002210	0.3851742	0.0000000	0.1260590	0.0003961	0.0915513	0.0000000	0.1850667
46	0.0019766	0.0019487	0.0000000	0.0000000	0.0018583	0.0004770	0.0000000	0.0000000	94	0.0001163	0.5105719	0.0000000	0.1071375	0.0002473	0.2418738	0.0000000	0.1592658
47	0.0022598	0.0021243	0.0000000	0.0000000	0.0020794	0.0005013	0.0000000	0.0000000	95	0.0000571	0.6532364	0.0000000	0.0886573	0.0001471	0.4985307	0.0000000	0.1336134
48	0.0025851	0.0023238	0.0000000	0.0000000	0.0023256	0.0005267	0.0000000	0.0000000	96	0.0000260	0.7943350	0.0000000	0.0712648	0.0000833	0.6787984	0.0000000	0.1090100
49	0.0029546	0.0025493	0.0000000	0.0000000	0.0025970	0.0005532	0.0000000	0.0000000	97	0.0000110	0.9125587	0.0000000	0.0555218	0.0000448	0.7305146	0.0000000	0.0862958
50	0.0033686	0.0028023	0.0000000	0.0000000	0.0028927	0.0005806	0.0000000	0.0000000	98	0.0000043	0.9960679	0.0000000	0.0418404	0.0000228	0.7389561	0.0000000	0.0661503
51	0.0038240	0.0030839	0.0000000	0.0000000	0.0032101	0.0006089	0.0000000	0.0000000	99	0.0000015	0.9999900	0.0000000	0.0304422	0.0000110	0.7399162	0.0000000	0.0490136
52	0.0043133	0.0033941	0.0000000	0.0000000	0.0035440	0.0006378	0.0000000	0.0000000	100	0.0000005	0.9999900	0.0000000	0.0213495	0.0000050	0.7399952	0.0000000	0.0350491
53	0.0048235	0.0037312	0.0000000	0.0000000	0.0038868	0.0006669	0.0000000	0.0000000	101	0.0000005	0.9999900	0.0000000	0.0213495	0.0000050	0.7399952	0.0000000	0.0350491
54	0.0053346	0.0040918	0.0000000	0.0000000	0.0042273	0.0006959	0.0000000	0.0000000	102	0.0000005	0.9999900	0.0000000	0.0213495	0.0000050	0.7399952	0.0000000	0.0350491
55	0.0058195	0.0044698	0.0000000	0.0000000	0.0045511	0.0007243	0.0000000	0.0000000	103	0.0000005	0.9999900	0.0000000	0.0213495	0.0000050	0.7399952	0.0000000	0.0350491
56	0.0065564	0.0048562	0.0000000	0.0000000	0.0049373	0.0007515	0.0000000	0.0000000	104	0.0000005	0.9999900	0.0000000	0.0213495	0.0000050	0.7399952	0.0000000	0.0350491
57	0.0067668	0.0052384	0.0000000	0.0000000	0.0052782	0.0007768	0.0000000	0.0000000	105	0.0000005	0.9999900	0.0000000	0.0213495	0.0000050	0.7399952	0.0000000	0.0350491
58	0.0070938	0.0056002	0.0000000	0.0000000	0.0053383	0.0007994	0.0000000	0.0000000	106	0.0000005	0.9999900	0.0000000	0.0213495	0.0000050	0.7399952	0.0000000	0.0350491
59						0.0008186	0.0000000	0.0000000	107			0.0000000		0.0000050	0.7399952	0.0000000	0.0350491
60		0.0064210		0.0000000		0.0006849		0.0000000	108			0.0000000		0.0000050		0.0000000	0.0350491
61			0.3845403			0.0006021		0.0000000	109			0.0000000		0.0000050		0.0000000	0.0350491
62	0.0017985	0.0064280	0.2908307	0.0000000	0.0024797	0.0005604	0.3786413	0.0000000	110	0.0000005	0.9999900	0.0000000	0.0213495	0.0000050	0.7399952	0.0000000	0.0350491
_						_	5 : (:							1			

V.9 Número de componentes familiares por cada pensionado

Dance de	Com	ponente fam	iliar de pensi	onados hom	bres	Com	ponente fam	iliar de pens	ionados muje	eres
Rango de edad	Cóyuge	Hijo	os	Pad	res	Cónyuge	Hij	os	Pad	res
euau	Mujeres	Hombres	Mujeres	Hombres	Mujeres	Hombres	Hombres	Mujeres	Hombres	Mujeres
0-2	0.00000	0.03013	0.02972	0.00000	0.00000	0.00000	0.01756	0.01718	0.00000	0.00000
3-5	0.00000	0.04710	0.04629	0.00000	0.00000	0.00000	0.02497	0.02614	0.00000	0.00000
6-8	0.00000	0.06492	0.06501	0.00000	0.00000	0.00000	0.04022	0.03797	0.00000	0.00000
9-11	0.00000	0.08176	0.08055	0.00000	0.00000	0.00000	0.05019	0.04965	0.00000	0.00000
12-14	0.00000	0.09676	0.09661	0.00000	0.00000	0.00000	0.06208	0.05874	0.00000	0.00000
15-17	0.00014	0.08196	0.08018	0.00000	0.00000	0.00022	0.05545	0.05318	0.00000	0.00000
18-20	0.00141	0.04054	0.04476	0.00000	0.00000	0.00003	0.02849	0.03211	0.00000	0.00000
21-23	0.00530	0.02183	0.02083	0.00000	0.00000	0.00003	0.01682	0.01493	0.00000	0.00000
24-26	0.01153	0.00410	0.00344	0.00000	0.00000	0.00006	0.00403	0.00407	0.00000	0.00000
27-29	0.01839	0.00063	0.00034	0.00000	0.00000	0.00000	0.00067	0.00075	0.00000	0.00000
30-32	0.02605	0.00003	0.00008	0.00000	0.00001	0.00006	0.00027	0.00025	0.00000	0.00000
33-35	0.03179	0.00007	0.00005	0.00000	0.00002	0.00003	0.00000	0.00025	0.00000	0.00000
36-38	0.03793	0.00002	0.00004	0.00000	0.00009	0.00003	0.00040	0.00022	0.00000	0.00000
39-41	0.04021	0.00007	0.00006	0.00007	0.00042	0.00006	0.00003	0.00016	0.00000	0.00023
42-44	0.04749	0.00000	0.00002	0.00049	0.00105	0.00013	0.00003	0.00006	0.00003	0.00077
45-47	0.05375	0.00000	0.00000	0.00039	0.00175	0.00000	0.00000	0.00000	0.00044	0.00219
48-50	0.05889	0.00000	0.00000	0.00086	0.00186	0.00014	0.00000	0.00000	0.00128	0.00248
51-53	0.05859	0.00000	0.00000	0.00114	0.00300	0.00000	0.00000	0.00006	0.00151	0.00435
54-56	0.04985	0.00000	0.00000	0.00150	0.00320	0.00000	0.00000	0.00003	0.00174	0.00366
57-59	0.03385	0.00000	0.00000	0.00180	0.00318	0.00004	0.00000	0.00000	0.00285	0.00426
60-62	0.02033	0.00000	0.00000	0.00210	0.00304	0.00010	0.00000	0.00000	0.00260	0.00434
63-65	0.01253	0.00000	0.00000	0.00147	0.00286	0.00000	0.00000	0.00000	0.00259	0.00388
66-68	0.00796	0.00000	0.00000	0.00162	0.00290	0.00003	0.00000	0.00000	0.00231	0.00557
69-71	0.00572	0.00000	0.00000	0.00116	0.00215	0.00000	0.00000	0.00000	0.00180	0.00362
72-74	0.00342	0.00000	0.00000	0.00102	0.00183	0.00003	0.00000	0.00000	0.00174	0.00333
75-77	0.00236	0.00000	0.00000	0.00071	0.00140	0.00004	0.00000	0.00000	0.00178	0.00452
78-80	0.00095	0.00000	0.00000	0.00047	0.00100	0.00000	0.00000	0.00000	0.00139	0.00268
81-83	0.00033	0.00000	0.00000	0.00028	0.00058	0.00000	0.00000	0.00000	0.00078	0.00158
84-86	0.00010	0.00000	0.00000	0.00011	0.00041	0.00003	0.00000	0.00000	0.00052	0.00132
87-89	0.00006	0.00000	0.00000	0.00008	0.00023	0.00000	0.00000	0.00000	0.00026	0.00052
90-92	0.00000	0.00000	0.00000	0.00003	0.00002	0.00000	0.00000	0.00000	0.00016	0.00026
93-95	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00007
96-98	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00003
99-101	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
102-104	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
105-107	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
108-110	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
Total	0.52891	0.46993	0.46800	0.01531	0.03100	0.00106	0.30121	0.29577	0.02377	0.04967

Fuente: Elaborado por la Coordinación de Administración de Riesgos Institucionales a partir de información institucional.

V.10 Número de componentes familiares por cada asegurado o pensionado fallecido

Rango de	Component	e familiar de	asegurados c	pensionado	s fallecidos	Component	e familiar de	asegurados d	pensionados	fallecidos
edad	Viudez	Orfar	dad	Ascend	lencia	Viudez	Orfan	ndad	Ascend	lencia
euau	Mujeres	Hombres	Mujeres	Hombres	Mujeres	Hombres	Hombres	Mujeres	Hombres	Mujeres
0-2	0.00000	0.07403	0.07077	0.00000	0.00000	0.00000	0.04582	0.04583	0.00000	0.00000
3-5	0.00000	0.10126	0.09844	0.00000	0.00000	0.00000	0.05912	0.05777	0.00000	0.00000
6-8	0.00000	0.10916	0.10697	0.00000	0.00000	0.00000	0.07112	0.06911	0.00000	0.00000
9-11	0.00000	0.10843	0.10496	0.00000	0.00000	0.00000	0.07857	0.07617	0.00000	0.00000
12-14	0.00000	0.10307	0.09955	0.00000	0.00000	0.00000	0.07952	0.08568	0.00000	0.00000
15-17	0.00087	0.07065	0.07103	0.00000	0.00000	0.00000	0.06573	0.06994	0.00000	0.00000
18-20	0.01034	0.03322	0.03367	0.00000	0.00000	0.00016	0.03365	0.03510	0.00000	0.00000
21-23	0.03319	0.01588	0.01488	0.00000	0.00000	0.00206	0.01713	0.01676	0.00000	0.00000
24-26	0.05575	0.00235	0.00204	0.00000	0.00000	0.00677	0.00239	0.00243	0.00000	0.00000
27-29	0.06741	0.00036	0.00025	0.00000	0.00000	0.01441	0.00032	0.00033	0.00000	0.00000
30-32	0.07228	0.00009	0.00010	0.00000	0.00003	0.02068	0.00004	0.00012	0.00000	0.00012
33-35	0.07304	0.00003	0.00007	0.00005	0.00014	0.02727	0.00008	0.00012	0.00008	0.00020
36-38	0.06857	0.00002	0.00002	0.00024	0.00158	0.03141	0.00000	0.00012	0.00016	0.00105
39-41	0.06356	0.00009	0.00000	0.00081	0.00377	0.03435	0.00004	0.00012	0.00100	0.00423
42-44	0.06284	0.00005	0.00004	0.00237	0.00766	0.03775	0.00023	0.00012	0.00254	0.00870
45-47	0.06117	0.00005	0.00003	0.00390	0.01172	0.03955	0.00000	0.00004	0.00466	0.01312
48-50	0.06084	0.00004	0.00001	0.00582	0.01420	0.04393	0.00016	0.00004	0.00838	0.01906
51-53	0.05612	0.00001	0.00002	0.00706	0.01545	0.04377	0.00000	0.00004	0.00973	0.02267
54-56	0.04909	0.00001	0.00001	0.00766	0.01486	0.04261	0.00000	0.00000	0.01218	0.02250
57-59	0.03819	0.00000	0.00000	0.00725	0.01342	0.03980	0.00000	0.00000	0.01317	0.02113
60-62	0.02487	0.00000	0.00000	0.00687	0.01149	0.03581	0.00000	0.00000	0.01118	0.01799
63-65	0.01699	0.00000	0.00000	0.00614	0.00877	0.02521	0.00000	0.00000	0.01131	0.01592
66-68	0.01102	0.00000	0.00000	0.00501	0.00585	0.01671	0.00000	0.00000	0.00963	0.01281
69-71	0.00862	0.00000	0.00000	0.00369	0.00475	0.01096	0.00000	0.00000	0.00717	0.00865
72-74	0.00559	0.00000	0.00000	0.00213	0.00300	0.00431	0.00000	0.00000	0.00470	0.00771
75-77	0.00362	0.00000	0.00000	0.00182	0.00240	0.00321	0.00000	0.00000	0.00430	0.00658
78-80	0.00200	0.00000	0.00000	0.00091	0.00137	0.00154	0.00000	0.00000	0.00285	0.00482
81-83	0.00104	0.00000	0.00000	0.00046	0.00069	0.00061	0.00000	0.00000	0.00218	0.00262
84-86	0.00060	0.00000	0.00000	0.00022	0.00052	0.00057	0.00000	0.00000	0.00097	0.00194
87-89	0.00023	0.00000	0.00000	0.00016	0.00021	0.00020	0.00000	0.00000	0.00065	0.00119
90-92	0.00006	0.00000	0.00000	0.00005	0.00011	0.00008	0.00000	0.00000	0.00024	0.00043
93-95	0.00002	0.00000	0.00000	0.00002	0.00003	0.00000	0.00000	0.00000	0.00000	0.00016
96-98	0.00000	0.00000	0.00000	0.00001	0.00001	0.00004	0.00000	0.00000	0.00000	0.00004
99-101	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00004
102-104	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
105-107	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
108-110	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
Total	0.84791	0.61881	0.60285	0.06265	0.12200	0.48376	0.45392	0.45981	0.10708	0.19371

Fuente: Elaborado por la Coordinación de Administración de Riesgos Institucionales a partir de información institucional

.

V.11 Número de componentes familiares por cada pensionado y asegurado o pensionado fallecido

Commonon	a Familian	Pensio	nado	Asegura	ado
Component	e Familiar	Hombre	Mujer	Hombre	Mujer
Cónyuge/	Hombre	0.0001		0.0002	
Viudez	Mujer		0.0011		0.0012

Fuente: Elaborado por la Coordinación de Administración de Riesgos Institucionales a partir de información institucional.

V.12 Tasas de mortalidad de inválidos y tasas de mortalidad de activos para la seguridad social para el capital mínimo de garantía (CMG), que sirven de base para el cálculo de las anualidades

	•	Act	ivos			Acti	vos
Edad	Inválidos		pacitado)	Edad	Inválidos	(No incar	
		Hombres	Mujeres			Hombres	Mujeres
15	0.03127	0.00091	0.00041	65	0.03269	0.00808	0.00177
16	0.03127	0.00093	0.00041	66	0.03293	0.00858	0.00193
17	0.03127	0.00096	0.00041	67	0.03320	0.00912	0.00212
18	0.03127	0.00098	0.00041	68	0.03352	0.00969	0.00233
19	0.03127	0.00101	0.00041	69	0.03388	0.01030	0.00257
20	0.03127	0.00104	0.00042	70	0.03429	0.01096	0.00285
21	0.03127	0.00107	0.00042	71	0.03477	0.01167	0.00317
22	0.03127	0.00111	0.00042	72	0.03531	0.01243	0.00354
23	0.03127	0.00114	0.00042	73	0.03594	0.01325	0.00397
24	0.03127	0.00118	0.00042	74	0.03667	0.01413	0.00448
25	0.03127	0.00122	0.00042	75	0.03750	0.01507	0.00507
25 26	0.03127	0.00122	0.00042	75 76	0.03730	0.01507	0.00577
27	0.03127	0.00120	0.00043	70 77	0.03955	0.01000	0.00660
28	0.03127	0.00135	0.00043	78	0.04083	0.01717	0.00058
29	0.03127	0.00140	0.00044	79	0.04230	0.01960	0.00874
30	0.03127	0.00145	0.00044	80	0.04400	0.02095	0.01014
31 32	0.03127	0.00151	0.00045	81 82	0.04598	0.02241	0.01182
32 33	0.03127	0.00156	0.00045	82 83	0.04829 0.05099	0.02397	0.01385
33 34	0.03127 0.03127	0.00163 0.00169	0.00046 0.00046	63 84	0.05099	0.02566 0.02748	0.01631 0.01931
35	0.03127	0.00176	0.00047	85	0.05790	0.02944	0.02297
36	0.03127	0.00184	0.00048	86	0.06233	0.03154	0.02746
37	0.03127	0.00192	0.00049	87	0.06760	0.03381	0.03300
38	0.03128	0.00200	0.00049	88	0.07392	0.03626	0.03984
39	0.03128	0.00209	0.00050	89	0.08152	0.03889	0.04831
40	0.03128	0.00218	0.00052	90	0.09074	0.04560	0.06516
41	0.03128	0.00228	0.00053	91	0.10199	0.05231	0.08202
42	0.03129	0.00239	0.00054	92	0.11578	0.06110	0.09355
43	0.03129	0.00250	0.00056	93	0.13280	0.07136	0.10671
44	0.03130	0.00262	0.00057	94	0.15389	0.08335	0.12173
45	0.03131	0.00275	0.00059	95	0.18011	0.09735	0.13885
46	0.03132	0.00288	0.00061	96	0.21272	0.11371	0.15838
47	0.03133	0.00303	0.00063	97	0.25315	0.13281	0.18067
48	0.03134	0.00318	0.00065	98	0.30283	0.15512	0.20608
49	0.03136	0.00334	0.00068	99	0.36291	0.18118	0.23507
50	0.03137	0.00352	0.00070	100	0.43371	0.21162	0.26814
51	0.03140	0.00370	0.00073	101	0.51404	0.24718	0.30586
52	0.03142	0.00390	0.00077	102	0.60062	0.28870	0.34889
53	0.03146	0.00411	0.00080	103	0.68808	0.33721	0.39798
54	0.03149	0.00433	0.00085	104	0.76993	0.39386	0.45396
55	0.03154	0.00457	0.00089	105	0.84035	0.46003	0.51782
56	0.03159	0.00483	0.00094	106	0.89592	0.53731	0.59067
57	0.03165	0.00510	0.00100	107	0.93622	0.62758	0.67377
58	0.03173	0.00539	0.00106	108	0.96321	0.73302	0.76855
59	0.03181	0.00570	0.00113	109	0.98000	0.85616	0.87667
60	0.03191	0.00604	0.00121	110	1.00000	1.00000	1.00000
61	0.03202	0.00639	0.00129				= = =
62	0.03216	0.00677	0.00139				
63	0.03231	0.00718	0.00150				
64	0.03249	0.00761	0.00163				
				_			

Fuente: Comisión Nacional de Seguros y Fianzas. Circular S - 22.2

V.13 Tasas de mejora aplicables a la mortalidad de activos para la seguridad social, que sirven de base para el cálculo de las anualidades

Edad	Hombres	Mujeres									
15	0.03099	0.03736	39	0.02426	0.03540	63	0.01075	0.01478	87	0.00568	0.00603
16	0.02902	0.03690	40	0.02351	0.03389	64	0.01041	0.01431	88	0.00559	0.00574
17	0.02736	0.03724	41	0.02273	0.03242	65	0.01007	0.01384	89	0.00548	0.00545
18	0.02604	0.03823	42	0.02193	0.03100	66	0.00973	0.01337	90	0.00536	0.00515
19	0.02508	0.03966	43	0.02112	0.02964	67	0.00939	0.01290	91	0.00522	0.00486
20	0.02445	0.04133	44	0.02032	0.02834	68	0.00904	0.01243	92	0.00505	0.00456
21	0.02413	0.04307	45	0.01953	0.02712	69	0.00870	0.01195	93	0.00479	0.00435
22	0.02407	0.04474	46	0.01877	0.02596	70	0.00836	0.01148	94	0.00452	0.00414
23	0.02420	0.04622	47	0.01804	0.02488	71	0.00802	0.01101	95	0.00424	0.00391
24	0.02450	0.04744	48	0.01734	0.02386	72	0.00768	0.01053	96	0.00396	0.00367
25	0.02490	0.04834	49	0.01667	0.02292	73	0.00733	0.01006	97	0.00367	0.00342
26	0.02535	0.04889	50	0.01605	0.02204	74	0.00699	0.00959	98	0.00338	0.00317
27	0.02582	0.04908	51	0.01546	0.02123	75	0.00665	0.00911	99	0.00308	0.00291
28	0.02625	0.04894	52	0.01491	0.02047	76	0.00651	0.00890	100	0.00000	0.00000
29	0.02663	0.04850	53	0.01439	0.01977	77	0.00637	0.00868	101	0.00000	0.00000
30	0.02692	0.04779	54	0.01391	0.01913	78	0.00624	0.00847	102	0.00000	0.00000
31	0.02710	0.04684	55	0.01346	0.01853	79	0.00613	0.00823	103	0.00000	0.00000
32	0.02716	0.04571	56	0.01313	0.01806	80	0.00604	0.00798	104	0.00000	0.00000
33	0.02709	0.04443	57	0.01279	0.01759	81	0.00597	0.00772	105	0.00000	0.00000
34	0.02689	0.04304	58	0.01245	0.01713	82	0.00591	0.00744	106	0.00000	0.00000
35	0.02657	0.04156	59	0.01211	0.01666	83	0.00587	0.00717	107	0.00000	0.00000
36	0.02612	0.04004	60	0.01177	0.01619	84	0.00584	0.00689	108	0.00000	0.00000
37	0.02558	0.03849	61	0.01143	0.01572	85	0.00580	0.00661	109	0.00000	0.00000
38	0.02495	0.03694	62	0.01109	0.01525	86	0.00575	0.00632	110	0.00000	0.00000

Fuente: Comisión Nacional de Seguros y Fianzas. Circular S-22.2 publicada el 19 de Noviembre de 2009

V.14 Tasas de deserción escolar para la seguridad social, que sirven de base para el cálculo de las anualidades

Edad	Probabilidad de deserción	Edad	Probabilidad de deserción	Edad	Probabilidad de deserción
16	0.25850	20	0.28591	24	0.08701
17	0.27796	21	0.31553	25	0.00000
18	0.28453	22	0.36447		
19	0.28119	23	0.38438		

Fuente: Comisión Nacional de Seguros y Fianzas. Circular S - 22.2

VI Nota Técnica

La valuación actuarial del Seguro de Invalidez y Vida (SIV), tiene como objetivo estimar las obligaciones que adquiere el Instituto Mexicano del Seguro Social (IMSS), por las prestaciones en dinero que se otorgan a los asegurados, a los pensionados y a sus respectivos beneficiarios.

Las prestaciones en dinero que establece la Ley del Seguro Social (LSS) para este seguro son:

- i) en el caso de una invalidez, una pensión temporal o definitiva; y,
- ii) en el caso de fallecimiento del asegurado o pensionado, pensión por viudez y/u orfandad y en caso de que no existan ninguno de los beneficiarios anteriores, se otorgará una pensión a los ascendientes.

La estimación de las obligaciones se realiza a través del método de proyecciones demográficas y financieras. Este método permite estimar actuarialmente tanto el número de asegurados futuros y sus salarios, como el número de pensionados con derecho a una renta vitalicia y su gasto por concepto de sumas aseguradas.

En cuanto a la estimación de los gastos administrativos, que se cargan a este seguro, se integran con los rubros de gastos relativos a los servicios de personal, Régimen de Jubilaciones y Pensiones, consumo, mantenimiento, servicios generales, y otros gastos (provisión para reservas de gastos e intereses financieros, depreciaciones).

Los beneficios que se valúan son los que se otorgan bajo lo que establece la LSS vigente a partir del 1° de julio de 1997, por ello el gasto que se deriva de las pensiones que se otorgan bajo los beneficios establecidos en la LSS de 1973 no se considera en esta valuación.

El proceso que se sigue para realizar la valuación actuarial es por sexo. A efecto de simplificar la metodología, ésta se describe en forma general. La presente nota técnica está dividida en tres secciones:

- I. Notación,
- II. Proyección Demográfica; y,
- III. Proyección Financiera.

VI.1 Notación

Notación	Descripción	Notación	Descripción
AA	Ayuda asistencial.	CB^{iv}_x	Cuantía básica de Invalidez o fallecimiento de un asegurado a edad x.
AF	Asignaciones familiares.	CP_x^{iv}	Cuantía promedio de invalidez a edad x.
$_{n+m}AFGA$ 97 $_{x}$	Asegurados fallecidos de la generación actual a edad x en el año $(n+m)$	CS_{SR}	Cuota social por rango salarial.
$_{n+m}AFGF_{x}$	Asegurados fallecidos de la generación futura a edad x en el año $(n+m)$	$Csdo_{n+m}$	Comisión sobre saldo en el año $(n+m)$
$_{n+m}AFGT_{x}$	Asegurados fallecidos de la generación en transición a edad x en el año $(n+m)$	DC_x	Densidad de cotización a la edad x del asegurado.
$_{n+m}APCS_{t+1,x+1}$	Aportación promedio bimestral que realiza el Gobierno Federal por concepto de cuota social para los trabajadores que cotizan y que sobreviven al final del año $(n+m)$ a edad $(x+1)$ y antigüedad $(t+1)$	$DistIng_{x+1}$	Vector por edad de nuevos ingresantes x+1.
$_{n+m}APCS1_{0,x+1}$	Aportación promedio bimestral que realiza el Gobierno Federal por concepto de cuota social para trabajadores que ingresan en cada año $(n+m)$ a edad $x+1$ y antigüedad 0	$_{n+m}ER$	Porcentaje de elección de régimen en el año $(n+m)$.
$_{n+m}APRCV_{t+1,x+1}$	Aportación promedio bimestral de los asegurados para la subcuenta de retiro, cesantía en edad avanzada y vejez (RCV), que sobreviven en cada año $(n+m)$ a edad $(x+1)$ y alcanzan la antigüedad $(t+1)$	HD_{n+m}	Hipótesis de crecimiento de asegurados del año $(n + m)$.
$_{n+m}APRCV1_{0,x+1}$	Aportación promedio bimestral de los asegurados para la subcuenta de RCV, que ingresan en cada año $(n+m)$ a edad $x+1$ y antigüedad 0	i^b_{rcv}	Tasa de interés real bimestral de inversión de los recursos de RCV
$_{n+m}APVIV_{t+1,x+1}$	Aportación promedio bimestral de los asegurados para la subcuenta de vivienda, que sobreviven en cada año $(n+m)$ a edad $(x+1)$ y alcanzan antigüedad $(t+1)$	i^b_{viv}	Tasa de interés real bimestral de inversión de los recursos de vivienda
$_{n+m}APVIV1_{0,x+1}$	Aportación promedio bimestral de los asegurados para la subcuenta de vivienda, que ingresan en cada año $(n+m)$ a edad $x+1$ y antigüedad 0	$_{n+m}Inv_{x}^{D}$	Pensionados de invalidez con carácter definitivo en el año $(n+m)$.
$_{n+m}AsegIng_{0,x}$	Asegurados que ingresan en el año $(n+m)$ a edad $x+1$ y antigüedad 0 .	$_{n+m}Inv_{x}^{t}$	Pensionados de invalidez con carácter temporal en el año $(n + m)$.
$_{n+m}AVGA$ 97 $_{t+1,x+1}$	Asegurados vigentes de la generación actual de edad $(x+1)$ y antigüedad $(t+1)$ en el año $(n+m)$.	$_{n+m}InvFall_{x}^{T}$	Fallecimientos de pensionados por invalidez con carácter temporal a edad x.
$_{n+m}AVGC_{t+1,x+1}$	Asegurados vigentes de la generación conjunta de edad $(x+1)$ y antigüedad $(t+1)$ en el año $(n+m)$.	$_{n+m}IncSal$	Incremento real de salarios para el año $(n+m)$.
$_{n+m}AVGF_{t+1,x+1}$	Asegurados vigentes de la generación futura de edad $(x+1)$ y antigüedad $(t+1)$ en el año $(n+m)$.	$\mathit{MatAscM}_{x,s}$	Matrices de componentes familiares de ascendientes mujeres de edad s con respecto a la edad x del asegurado fallecido.
$_{n+m}AVGT_{t+1,x+1}$	Asegurados vigentes de la generación en transición de edad $(x+1)$ y antigüedad $(t+1)$ en el año $(n+m)$.	$\mathit{MatAscH}_{x,s}$	Matriz de componentes familiares de ascendientes hombres de edad s con respecto a la edad x del asegurado fallecido.
Cap^k_{rcv}	Capitalización del k-ésimo periodo para la subcuenta de retiro, cesantía en edad avanzada y vejez.	$MatEspM_{x,y}$	Matriz de componentes familiares de esposas de edad y con respecto a la edad x del asegurado.
Cap_{viv}^k	Capitalización del k-ésimo periodo para la subcuenta de vivienda.	$MatEspH_{x,y}$	Matriz de componentes familiares de esposos de edad <i>y</i> con respecto a la edad <i>x</i> del asegurado.

Notación	Descripción	Notación	Descripción
$MatHijos_{x,z}$	Matriz de componentes familiares de hijos de edad z con respecto a la edad x del asegurado.	$psa_{t+1,x}$	Probabilidad de que un asegurado de edad x y antigüedad $t+1$ continúe en activo a la edad $x+1$.
MatHijas _{x,z}	Matriz de componentes familiares de hijas de edad z con respecto a la edad x del asegurado.	$psobin_x$	Probabilidad de sobrevivencia de un inválido de edad x .
$MatMad_{x,s}$	Matriz de componentes familiares de madres de edad s con respecto a la edad x del asegurado.	$_{n+m}Sal_{x}$	Vector de salarios a la edad x en el año $(n+m)$.
$MatPad_{x,s}$	Matriz de componentes familiares de padres de edad s con respecto a la edad x del asegurado.	SA	Suma asegurada por invalidez (in), y por muerte de pensionados o asegurados (mte).
$MatOrfM_{x,z}$	Matriz de componentes familiares de huérfanos mujeres de edad z con respecto a la edad x del asegurado fallecido.	SdoCI	Saldo en la cuenta individual.
$MatOrfH_{x,z}$	Matriz de componentes familiares de huérfanos hombres de edad z con respecto a la edad x del asegurado fallecido.	SdoCS	Saldo en la cuenta individual por cuota social.
$MatViuM_{x,y}$	Matriz de componentes familiares de viudas de edad y con respecto a la edad x del asegurado fallecido.	SdoRCV	Saldo en la subcuenta de retiro, cesantía en edad avanzada y vejez.
$\mathit{MatViuH}_{x,y}$	Matriz de componentes familiares de viudos de edad y con respecto a la edad x del asegurado fallecido.	SdoVIV	Saldo en la subcuenta de vivienda.
МС	Monto Constitutivo.	_{n+m} SdoRCV1 _{0,x+1}	Saldo en la subcuenta de retiro, cesantía en edad avanzada y vejez, de los asegurados que ingresan en cada año $(n + m)$ a edad $x + 1$ y antigüedad 0
$_kP_x$	Probabilidad de que un pensionado de edad x alcance la edad x + k.	_{n+m} SdoVIV1 _{0,x+1}	Saldo en la subcuenta de vivienda, de los asegurados que ingresan en cada año $(n+m)$ a edad $x+1$ y antigüedad 0
PG	Pensión Garantizada.	$_{n+m}SM$	Salario mínimo diarios en el año $(n+m)$.
$_{n+m}PorcDef$	Proporción de las pensiones de carácter definitivo en el año $(n+m)$.	SP^{iv}_{x}	Salario pensionable mensual equivalente al promedio de los salarios reales de las últimas quinientas semanas de cotización anteriores al otorgamiento de la pensión.
$_{n+m}$ PorcTemp	Proporción de las pensiones de carácter temporal en el año $(n + m)$.	$_{n+m}SS_{x}$	Seguro de sobrevivencia en la edad x del asegurado en el año $(n + m)$
$ProbMte_x$	Probabilidad de que un asegurado de edad x salga de la actividad laboral por fallecimiento.	SV	Seguro de vida
$ProbCeve_x$	Probabilidad de que un asegurado de edad x salga de la actividad laboral por cesantía en edad avanzada o vejez.	$_{n+m}T1_{t+1,x}$	Asegurados de edad x y antigüedad t que cotizan durante el año de valuación $(n+m)$ y llegarán a antigüedad $(t+1)$.
$ProbInv_x$	Probabilidad de que un asegurado de edad x salga de la actividad laboral a causa de una invalidez por un riesgo no laboral.	$_{n+m}T2_{t+1,x}$	Asegurados de edad x y antigüedad $(t+1)$ que no cotizan durante en el año de valuación $(n+m)$ y que continuarán en la antigüedad $(t+1)$.
$ProblP_x$	Probabilidad de que un asegurado de edad x salga de la actividad a causa de una incapacidad por un riesgo laboral.	V^k	Valor presente al año k.
$ProbMteRT_x$	Probabilidad de que un asegurado de edad x salga de la actividad por fallecimiento derivado de un accidente o enfermedad de trabajo.	$_{n+m}VAP_{x}$	Volumen anual de pensiones durante el tiempo que el inválido esté como temporal en el año correspondiente $(n+m)$
psa_x	Probabilidad de que un asegurado de edad x continúe en activo a la edad $x+1$.	_{n+m} Volsal	Volumen anual de salarios en el año $(n+m)$

VI.2 Proyección demográfica

La proyección demográfica de la valuación actuarial del SIV se divide en:

- Proyección del número de asegurados
- Proyección del número de pensionados.

VI.2.1 Proyección de Asegurados

La proyección de los asegurados se divide en:

- La estimación del número de asegurados vigentes al final de cada año.
- La estimación del número de bajas de asegurados.

VI.2.1.1 Proyección de los Asegurados vigentes

La proyección del número de asegurados que continúan en activo al final de cada año de proyección se conforma de las siguientes poblaciones:

a) Los asegurados vigentes al 31 de diciembre del año base de valuación y que continúan en activo al final de cada año de proyección.

A esta población se le denomina Generación Actual de Asegurados y se divide en: i) Generación en transición (*GT*); y, ii) Generación actual bajo la LSS de 1997(*GA*97). La generación en transición considera a los asegurados cuya afiliación al IMSS se realizó hasta el 30 de junio de 1997 y que además tienen derecho a la elección de régimen entre los beneficios por pensión de la LSS de 1973 y los de la LSS vigente³³. Por su parte la generación actual LSS97 de asegurados vigentes al 31 de diciembre del año base de valuación, considera a los asegurados cuya afiliación es a partir del 1° de julio de 1997 y por lo tanto tienen únicamente derecho a los beneficios que establece la LSS vigente.

b) De los asegurados futuros que se irán incorporando en cada año de proyección y que continúan en activo hasta el momento que les ocurra una contingencia por una invalidez o fallecimiento por un accidente o enfermedad no laboral, por incapacidad o fallecimiento derivado de un accidente o enfermedad de trabajo, por cesantía en edad avanzada a partir de los 60 años de edad o por vejez a los 65 años de edad. A esta población se le denomina Generación Futura de Asegurados bajo la LSS de 1997 (*GF*).

³³ Artículo tercero transitorio de la LSS que entró en vigor el día primero de julio de 1997: "Los asegurados inscritos con anterioridad a la fecha de entrada en vigor de esta Ley, así como sus beneficiarios, al momento de cumplirse, en términos de la Ley que se deroga, los supuestos legales o el siniestro respectivo para el disfrute de cualquiera de las pensiones, podrán optar por acogerse al beneficio de dicha Ley o al esquema de pensiones establecido en el presente ordenamiento."

Para efectos de la nota técnica se denota a n como el año base de valuación, para el caso particular de este documento es igual a 2018. Además, es necesario establecer que todos los cálculos se realizarán para años subsecuentes al año base, es decir, para n+m, donde m=1,2,3,...,99,100.

La proyección de asegurados se formula de la siguiente manera.

Generación Actual

La estimación del número de asegurados de la generación actual que sobreviven al final del año n+m de proyección, toma como base a los asegurados que cotizan³⁴ y los que no cotizan³⁵, los cuales se obtienen aplicando la densidad de cotización a los asegurados vigentes al final del año inmediato anterior [n+(m-1)]. Una vez obtenidos los asegurados que cotizan y no cotizan, se les aplica la probabilidad de sobrevivencia como asegurado en función de la edad y antigüedad. Quedando la siguiente fórmula:

Generación en transición (GT)

$$\begin{split} &_{n+m}AVGT_{t+1,x+1} = \left(_{n+m}T1_{t+1,x}^{GT} + _{n+m}T2_{t+1,x}^{GT}\right) \times psa_{t+1,x} \\ &_{n+m}T1_{t+1,x}^{GT} = _{n+(m-1)}AVGT_{t,x} \times DC_{x} \\ &_{n+m}T2_{t+1,x}^{GT} = _{n+(m-1)}AVGT_{t+1,x} \times (1-DC_{x}) \end{split}$$

Generación actual LSS97 (GA97)

$$\begin{split} &_{n+m}AVGA97_{t+1,x+1} = \left(_{n+m}T1_{t+1,x}^{GA} + _{n+m}T2_{t+1,x}^{GA}\right) \times psa_{t+1,x} \\ &_{n+m}T1_{t+1,x}^{GA} = _{n+(m-1)}AVGA_{t,x} \times DC_{x} \\ &_{n+m}T2_{t+1,x}^{GA} = _{n+(m-1)}AVGA_{t+1,x} \times (1-DC_{x}) \end{split}$$

La probabilidad de sobrevivencia como activo que se aplica a los asegurados de cada generación conforme a lo siguiente:

Generación en transición (GT)

$$psa_{t+1,x} = \begin{cases} 1 - (ProbInv_x + ProbMte_x + ProbIP_x + ProbMteRT_x) & si \ t \leq 9 \\ 1 - (ProbInv_x + ProbCeVe_x + ProbMte_x + ProbIP_x + ProbMteRT_x) \ si \ t \geq 10 \end{cases}$$

Nota: Para el caso de la generación GA97 y futura, los límites de la antigüedad t cambian de 9 a 24 y de 10 a 24.

³⁴ Para fines del modelo se consideran aquellos asegurados que alcanzan un año más de antigüedad.

³⁵Para fines del modelo se consideran aquellos asegurados que permanecen con la misma antigüedad.

Las variables $ProbInv_x$, $ProbMte_x$, $ProbIP_x$, $ProbMteRT_x$ y $ProbCeve_x$ son las probabilidades por edad de que un asegurado salga de la actividad laboral a causa de:

- i) una invalidez o fallecimiento por un accidente o enfermedad no laboral;
- ii) por incapacidad o fallecimiento derivado de un accidente o enfermedad de trabajo; o,
- iii) por cesantía en edad avanzada a partir de los 60 años, cuando el asegurado quede privado de trabajos remunerados, o por vejez a la edad de los 65 años.

El vector $psa_{t+1,x}$ está en función de la antigüedad de los trabajadores, debido a que para adquirir el derecho a una pensión por invalidez, cesantía en edad avanzada o vejez se tienen que cumplir con requisitos de antigüedad que establece la LSS.

Generación futura bajo la LSS vigente

A diferencia de la generación actual, que es un grupo cerrado, la generación futura es un grupo abierto, que está integrado por los nuevos asegurados que se afilian al Instituto en cada año de proyección ($_{n+m}AsegIng_{0,x+1}$), los cuales se consideran que irán sobreviviendo al final de cada año de proyección hasta que les ocurra alguna contingencia.

La estimación del número de asegurados que ingresarán en cada año está en función tanto del supuesto de crecimiento de asegurados como de la diferencia entre el número de asegurados en el año [n+(m-1)] que se tiene para la generación conjunta.

El número de asegurados que se espera haya en el año (n+m) se determina de la siguiente manera:

$$_{n+m}AVGC = _{n+(m-1)}AVGC \times (1 + HD_{n+m})$$

Esta expresión engloba las tres generaciones de asegurados consideradas en la valuación actuarial.

Bajo lo anterior, el vector de nuevos ingresantes de asegurados se obtiene de la siguiente manera:

$$\underset{n+m}{\text{AsegIng}_{0,x+1}} = \left\{ \begin{bmatrix} \sum_{n+m}^{50,100} \sum_{n+m}^{n+m} \text{AVGT}_{t,x} + \sum_{t=0,x=15}^{50,100} \sum_{n+m}^{n+m} \text{AVGA}_{t,x} \end{bmatrix} \right] \times \text{DistIng}_{x} \\ \begin{bmatrix} \sum_{t=0,x=15}^{50,100} \sum_{n+m}^{n+m} \text{AVGT}_{t,x} + \sum_{t=0,x=15}^{50,100} \sum_{n+m}^{n+m} \text{AVGA}_{t,x} + \left(\sum_{n+m}^{2F} T_{t+1,x}^{GF} + \sum_{n+m}^{2F} T_{t+1,x}^{GF} \right) \times psa_{t+1,x} \end{bmatrix} \times \text{DistIng}_{x} \\ \text{para m} = 1 \\ \begin{bmatrix} \sum_{t=0,x=15}^{50,100} \sum_{n+m}^{n+m} \text{AVGT}_{t,x} + \sum_{t=0,x=15}^{50,100} \sum_{n+m}^{n+m} \text{AVGA}_{t,x} + \left(\sum_{n+m}^{2F} T_{t+1,x}^{GF} + \sum_{n+m}^{2F} T_{t+1,x}^{GF} \right) \times psa_{t+1,x} \end{bmatrix} \times \text{DistIng}_{x} \\ \text{para m} > 1 \\ \end{bmatrix} \times \text{DistIng}_{x} \\ \text{para m} > 1 \\ \begin{bmatrix} \sum_{n+m}^{50,100} \sum_{n+m}^{50,1$$

Dónde:

DistIng_x: Distribución por edad de nuevos ingresantes, en el que la edad x toma valores de 15 a 58.

$$_{\text{n+m}} \text{AVGF}_{\text{t+1,x+1}} = \begin{cases} _{\text{n+m}} \text{AsegIng}_{0,\text{x+1}} & \text{para m} = 1 \\ \\ \left(_{n+m} T1_{t+1,x}^{GF} + {_{n+m}} T2_{t+1,x}^{GF}\right) \times psa_{t+1,x} + {_{n+m}} \text{AsegIng}_{0,\text{x+1}} & \text{para m} > 1 \end{cases}$$

Así que la proyección de asegurados para la generación futura queda de la siguiente manera:

Generación futura LSS97 (GF)

Para m=1 $_{n+m}AVGF_{0,x+1} = _{n+m}AsegIng_{0,x+1} \times psa_{0,x+1}^{GF}$

Para m>1

$$\begin{array}{l} _{n+m}AVGF_{t+1,x+1} = \left(_{n+m}T1_{t+1,x}^{GF} + _{n+m}T2_{t+1,x}^{GF} \right) \times psa_{t+1,x} + _{n+m}AsegIng_{0,x+1} \ \times \ psa_{0,x+1}^{GF} \\ \\ _{n+m}T1_{t+1,x}^{GF} = _{n+(m-1)}AVGF_{t,x} \times DC_{x} \\ \\ \underline{ \\ \text{Nota: } psa_{0,x+1} = 1 \end{array}$$

Por lo que para de la generación conjunta la estimación del vector de asegurados por edad x y antigüedad t vigentes al final de cada año de proyección sería:

$$_{n+m}AVGC_{t+1,x+1} = {_{n+m}AVGT_{t+1,x+1}} + {_{n+m}AVGA_{t+1,x+1}} + {_{n+m}AVGF_{t+1,x+1}}$$

Por lo que el total de la población de la generación conjunta se define:

$${}_{n+m}AVGC = \sum_{t=0,x=15}^{50,100} {}_{n+m}AVGT_{t+1,x+1} + \sum_{t=0,x=15}^{50,100} {}_{n+m}AVGA_{t+1,x+1} + \sum_{t=0,x=15}^{50,100} {}_{n+m}AVGF_{t+1,x+1}$$

VI.2.1.2 Bajas de Asegurados

Para realizar la proyección demográfica de los asegurados se consideran todas las causas de baja por pensión de la población, sin embargo para efectos de la valuación actuarial del SIV únicamente se evalúan las que corresponden a invalidez y fallecimiento a causa de un accidente o enfermedad no laboral, y que generan un gasto asociado a las prestaciones en dinero que otorga este seguro.

En este sentido, las salidas de la actividad laboral de los asegurados que se consideran son las que se enlistan a continuación, y se estiman aplicando a las matrices de asegurados de cada generación la probabilidad de baja de la actividad

laboral que corresponda. El proceso que se muestran es el que concierne a la generación en transición.

• Incapacidad a causa de una enfermedad o riesgo laboral ($ProbIP_x$).

$$_{n+m}IP_{x} = \sum_{t=0}^{50} {_{n+(m-1)}AVGT_{t,x}} \times {_{PV}ProbIP_{x}}$$

• Invalidez a causa de un riesgo no laboral ($ProbInv_x$).

$$_{n+m}Inv_{x} = \sum_{t=0}^{50} {_{n+(m-1)}AVGT_{t,x}} \times ProbInv_{x}$$

• Muerte del trabajador a causa de un riesgo laboral $(ProbMteRT_x)$ y no laboral $(ProbMte_x)$.

$$_{n+m}AFGT_{x} = \sum_{t=0}^{50} {_{n+(m-1)}AVGT_{t,x}} \times ProbMteRT_{x}$$

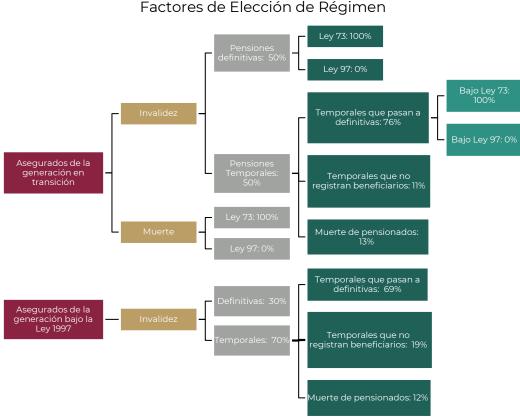
$$_{n+m}AFGT_x = \sum_{t=0}^{50} {_{n+(m-1)}AVGT_{t,x}} \times ProbMte_x$$

• Retiro por cesantía en edad avanzada o vejez (*ProbCeve_r*).

$$_{n+m}CeVe_x = \sum_{t=0}^{50} {_{n+(m-1)}AVGT_{t,x}} \times ProbCeVe_x$$

Este mismo proceso se aplica para las generaciones GA97 y futura.

VI.2.2 Proyección de Pensionados


En esta sección se describe el proceso para obtener la proyección del número de asegurados que causarán baja por pensión debido a un riesgo no laboral en el año (n+m) y que generarán un gasto para el SIV.

La estimación del número de pensionados que recibirán una renta vitalicia en el año (n+m) de proyección, se realiza tomando como base el número de asegurados vigentes al final del año inmediato anterior [n+(m-1)], y que durante el año (n+m) saldrán de la actividad laboral, ya sea por fallecimiento o por una invalidez.

Los pensionados estimados en la valuación actuarial del SIV se separan en directos y derivados. Los pensionados directos son los que tienen derecho a una pensión por invalidez, ya sea con carácter definitivo o con carácter temporal. Los pensionados derivados son los beneficiarios del asegurado o pensionado fallecido a causa de una enfermedad o riesgo no laboral y que además tienen derecho a una pensión de viudez, orfandad o ascendencia.

La valuación actuarial estima únicamente el gasto que se genera bajo la LSS vigentes, por lo que para la generación en transición de asegurados es necesario simular el número de nuevas pensiones que se otorgarán bajo dicha Ley, para lo cual se aplica un factor de elección de régimen (ER). Esto se hace utilizando el árbol de decisión, en el que se establece la Matriz de las nuevas pensiones que se van a otorgar bajo la Ley vigente, de las cuales una proporción de estas será con carácter definitivo (PorcDef) y otra con carácter temporal (PorcTemp). Al momento de que las pensiones temporales pasan a definitivas, se les aplica la elección de régimen.

Para la generación actual (GA97) y la generación futura (GF), el árbol de decisión establece únicamente la proporción de pensiones que se otorgarán con carácter definitivo y temporal. Bajo este contexto, el árbol de decisión se estructura como se muestra de la siguiente forma:

Fuente: Dirección de Finanzas, IMSS.

El proceso que se sigue para determinar el número de pensionados por invalidez bajo la LSS vigente se describe a continuación.

VI.2.2.1 Pensionados por invalidez

En la valuación actuarial se estima el número de pensionados por

- Invalidez con pensión definitiva.
- Invalidez con carácter temporal.

VI.2.2.1.1 Inválidos con pensión definitiva

El número de nuevos inválidos con **pensión definitiva** provenientes de la generación en transición de asegurados se estima de la siguiente forma:

$$_{n+m}Inv_{x}^{D} = \sum_{t=3}^{50} {}_{n+(m-1)}AVGT_{t,x} \times ProbInv_{x} \times {}_{n+m}PorcDef \times {}_{n+m}ER$$

Este mismo procedimiento se aplica para estimar los pensionados definitivos que provienen de la generación actual bajo la LSS de 1997, así como para la generación futura, sólo que para éstas no se aplica el factor de elección de régimen ER.

VI.2.2.1.2 Inválidos con pensión temporal

La proyección demográfica de los pensionados por invalidez con carácter temporal se divide en:

- i) entrada de los nuevos pensionados;
- ii) estimación de la sobrevivencia de pensionados temporales; y,
- iii) estimación de los pensionados temporales que fallecen mientras permanecen con el estatus de temporal.

La determinación de estas pensiones se realiza bajo el supuesto de que en tres años pasarán a definitivas.

El número de nuevos inválidos con **pensión temporal** provenientes de la generación en transición de asegurados se estima de la siguiente manera:

$$_{n+m}Inv_{x}^{T} = _{n+(m-1)}AVGT_{t,x} \times ProbInv_{x} \times _{n+m}PorcTemp$$

Los pensionados temporales de la generación GA97 y GF se calculan de la misma forma.

Sobrevivencia de pensionados

En la valuación actuarial se utiliza el supuesto de que estos pensionados se incorporan a mitad de año, por lo que los sobrevivientes al final de cada periodo se calculan de la siguiente manera:

Sobrevivientes

$$_{n+m}Inv_{x+1}^{T} = _{n+(m-1)}Inv_{x}^{T} \times \frac{2 \times psobin_{x}}{1 + psobin_{x}}$$

$$_{n+(m+1)}Inv_{x+2}^T = _{n+m}Inv_{x+1}^T \times psobin_{x+1}$$

$$_{n+(m+2)}Inv_{x+3}^T = _{n+m}Inv_{x+2}^T \times psobin_{x+2}$$

$${}_{n+\left(m+2+\frac{1}{2}\right)}Inv_{x+3}^{T} = {}_{n+\left(m+2\right)}Inv_{x+2}^{T} \times \frac{1+psobin_{x+2}}{2}$$

$$_{n+\left(m+2+\frac{1}{2}\right)}Inv_{x+3}^{D} = {_{n+\left(m+2+\frac{1}{2}\right)}}Inv_{x+2}^{T} \times {_{n+\left(m+2\right)}}ER$$

Fallecidos

$$_{n+m}InvFall_{x}^{T} = _{n+(m-1)}Inv_{x}^{T} \times \left(1 - \frac{2 \times psobin_{x}}{1 + psobin_{x}}\right) \times _{n+m}ER$$

$$_{n+(m+1)}InvFall_{x+1}^T = {_{n+m}Inv_{x+1}^T} \times (1-psobin_{x+1}) \times {_{n+(m+1)}ER}$$

$$_{n+(m+2)}InvFall_{x+2}^{T}={_{n+m}Inv_{x+2}^{T}}\times (1-psobin_{x+2})\times {_{n+(m+2)}ER}$$

$$n + \left(m + 2 + \frac{1}{2}\right) InvFall_{x+3}^T = n + (m+2) Inv_{x+2}^T \times \left(1 - \frac{1 + psobin_{x+2}}{2}\right) \times n + (m+2) ER$$

Este procedimiento se aplica de igual forma para estimar las pensiones que provienen tanto de los asegurados de la generación actual bajo la LSS de 1997 y a los asegurados de la generación futura, lo que varía es la aplicación del factor de elección de régimen (*ER*), el cual no existe para estas generaciones.

VI.2.3 Proyección de Pensiones Derivadas del Fallecimiento de un Asegurado

De acuerdo al artículo 127 de la LSS, los beneficiarios de los asegurados fallecidos tendrán derecho a las prestaciones en dinero que otorga el SIV. Para el caso específico de los asegurados de la generación en transición, los beneficios que se valúan son únicamente los que de acuerdo a los criterios de elección de régimen, opten por los beneficios de la LSS de 1997.

Asimismo, a partir de la valuación actuarial al 31 de diciembre de 2018 el IMSS reconoce el derecho a las prestaciones en dinero de los beneficiarios de las mujeres aseguradas o pensionadas bajo las mismas condiciones que para los beneficiarios de asegurados o pensionados, así como de las personas aseguradas o pensionadas de las parejas del mismo sexo³⁶, garantizando así el uso efectivo de los derechos. Además se separaron de acuerdo al sexo tanto del titular como del beneficiario las matrices de componentes familiares que se utilizan para el cálculo de los montos constitutivos por el seguro de sobrevivencia y por fallecimiento.

Por lo anterior, se adoptaron los supuestos que permiten estimar el costo de las prestaciones en dinero que se otorgarán a los beneficiarios de:

- a) Mujeres aseguradas o pensionadas fallecidas bajo las mismas condiciones que para los beneficiarios de asegurados o pensionados fallecidos.
- b) Personas aseguradas o pensionadas con parejas del mismo sexo
- c) De acuerdo al sexo del beneficiario de la pensión.

La estimación de las obligaciones antes señaladas se realiza en función de los asegurados fallecidos en cada año (n+m) de proyección:

$$_{n+m} AFGT_{x} = \sum_{t=3}^{50} {_{n+(m-1)}} AVGT_{t,x} \times ProbMte_{x} \times {_{n+m}ER}$$

$$_{n+m}$$
 AFGA97 $_{x} = \sum_{t=3}^{50} {_{n+(m-1)}}$ AVGA97 $_{t,x} \times ProbMte_{x}$

$$_{n+m} AFGF97_x = \sum_{t=3}^{50} {}_{n+(m-1)}AVGC_{t,x} \times ProbMte_x$$

³⁶ La ampliación de beneficiarios con derecho a una pensión se sustenta en la Medida de Reparación Tercera de la Resolución por Disposición 9/2015 de la Comisión Nacional para Prevenir la Discriminación enviada al Instituto Mexicano del Seguro Social, respecto a la aplicación del principio pro persona y se conceda la pensión por viudez a los hombres, sin imponer requisitos adicionales a los que se les solicitan a las mujeres viudas, por motivo de su género.

VI.3 Proyección financiera

La proyección financiera se divide en dos secciones.

- A. La primera involucra la proyección de los volúmenes de salario anual y la estimación del saldo acumulado en la cuenta individual de los trabajadores a la fecha de que ocurra una contingencia de invalidez o muerte.
- B. La segunda estima el gasto del SIV derivado de:
 - i) las prestaciones en dinero de largo plazo relativas a pensiones y que se obtienen a través del método de proyecciones demográficas y financieras;
 - ii) el gasto administrativo se integra a partir del gasto que se asigna a este seguro por servicios de personal, consumo, mantenimiento y servicios generales; Régimen de Jubilaciones y Pensiones, y otros gastos (obligaciones contractuales, provisión para reservas de gastos y depreciaciones). La estimación del costo de los servicios de personal consideró los conceptos relativos a las erogaciones por percepciones salariales de los trabajadores, aportaciones a la seguridad social³⁷, impuesto sobre la renta por salarios a cargo del IMSS en su carácter de patrón, pagos por prima de antigüedad y otros gastos³⁸. Dicha estimación se realizó a través del método de proyecciones demográficas y financieras, en donde se proyectó la sobrevivencia de los trabajadores del Régimen Ordinario, así como la sobrevivencia de los nuevos ingresos de trabajadores para un periodo de 100 años.

La proporción del costo de servicios de personal que se asigna al Seguro de Invalidez y Vida es de 0.60%, la cual se determinó de acuerdo con la proporción promedio de gasto asignado en la contabilidad del IMSS de los últimos 10 años.

El costo del Régimen de Jubilaciones y Pensiones (RJP) que se considera para determinar los gastos de administración es el que corresponde al gasto total del régimen descontando el costo de las pensiones de la seguridad social y las aportaciones de los trabajadores, este costo es el que absorbe el IMSS en su carácter de patrón y que se cubre con cargo a los ingresos por cuotas de cada seguro. La determinación de este gasto la estima un despacho externo³⁹ mediante la valuación actuarial respectiva.

La proporción del gasto del RJP que se asigna al Seguro de Invalidez y Vida es de 0.62%, mismo que se determinó de acuerdo con la proporción promedio de gasto de los últimos 10 años que se asigna en la contabilidad del IMSS.

³⁷ Incluye la aportación al Régimen de Jubilaciones y Pensiones por 1.25% del salario base.

³⁸ Incluye las percepciones extraordinarias que comprenden los conceptos de: sueldos temporales y sustitutos, nivelación de plazas, compensación, guardias y tiempo extra, conceptos complementarios (ropa contractual, emolumentos, gastos del programa de formación de investigadores, incapacidades, anteojos, seguros de vida, distintivos y reconocimientos a méritos laborales y otros), pasivos y activos asociados al flujo de efectivo, y deducciones y devoluciones.

³⁹ Valuación Actuarial del Régimen de Jubilaciones y Pensiones, y de la Prima de Antigüedad e Indemnizaciones de los Trabajadores del Instituto Mexicano del Seguro Social al 31 de diciembre de 2018, realizada por el despacho Lockton México, Agente de Seguros y de Fianzas, S. A. de C. V.

La proyección financiera se realiza en pesos del año base de valuación por lo que los supuestos de crecimiento de salarios, del salario mínimo y del valor de la unidad de medida y actualización, así como la tasa de interés que se utiliza para la estimación del saldo acumulado en la cuenta individual están en términos reales.

VI.3.1 Estimación de los Componentes Financieros

VI.3.1.1 Estimación del Volumen de Salarios

El volumen de salarios se estima a partir de la proyección de los asegurados que cotizan durante el año y que llegan vigentes al final del mismo, así como del vector de salarios, el cual se proyecta de la siguiente forma:

$$_{n+m}Sal_x = _{n}Sal_x \times \prod_{k=1}^{m} (1 + IncSal_k)$$

La fórmula para determinar el volumen anual de salarios, tanto para la generación en transición como para la generación actual de la LSS de 97, es la misma, a continuación se ilustra la fórmula para la generación en transición:

$$_{\rm n+m} {
m Volsal}^{GT} = \sum_{t=0, {
m x}=15}^{50,100} {}_{n+m} {
m T1}_{t+1, x}^{GT} \times {}_{\rm n+m} {
m Sal}_{
m x} imes 365$$

Para la generación futura el volumen de salarios se construye a partir de dos poblaciones:

- Los nuevos asegurados, para los cuales se adopta el supuesto de que ingresan a mitad de año y que permanecerán vigentes al final del mismo. Para este grupo se calcula en volumen de salarios de medio año.
- Los asegurados vigentes en el año inmediato anterior y que durante el año proyectado adquirirán un año más de antigüedad y estarán vigentes al final del año valuado. Para este grupo de asegurados se estima un volumen de salarios de un año completo.

Para la generación futura la fórmula para el cálculo del volumen de salarios es como sigue:

$$_{n+m} Volsal^{GF} = \sum_{t=0}^{50,100} \left[\left(_{n+m} AsegIng_{0,x+1}^{GF} \times \frac{365}{2} \right) + \left(_{n+m} T1_{t+1,x}^{GF} \times 365 \right) \right] \times _{n+m} Sal_{x}$$

VI.3.1.2 Estimación del Saldo Acumulado en la Cuenta Individual

La estimación del saldo en la cuenta individual de los trabajadores se realiza para las subcuentas de Retiro, Cesantía en Edad Avanzada y Vejez (RCV) y para la de vivienda, la cual considera lo siguiente:

- Estimación de las aportaciones promedio a las subcuentas en cada año de proyección.
- Estimación del saldo de la cuenta individual al final de cada de proyección.

La estimación del saldo de la cuenta individual para los asegurados en activo se realiza hasta que ocurre una contingencia por invalidez o fallecimiento, y ya sea que él o sus beneficiarios adquieran el derecho a una pensión.

Para el caso de los pensionados por invalidez con estatus de temporal, una vez que ocurrió la contingencia, el saldo sólo se capitaliza hasta el momento que se otorga la pensión definitiva o el pensionado fallece antes de otorgarse dicha pensión.

a) Saldo acumulado en la cuenta individual de los asegurados

El saldo de cada subcuenta para los asegurados vigentes al año base es proporcionado por la Comisión Nacional de los Sistemas de Ahorro para el Retiro, el cual se incrementará hasta que ocurra una contingencia por invalidez o fallecimiento. La estimación del saldo en la cuenta individual de los asegurados en cada año está dada por:

- Las aportaciones futuras a cada subcuenta, más
- Los rendimientos de los saldos depositados en dichas cuentas, menos
- Las comisiones cobradas por las AFORE's por la administración de los recursos.

i) Estimación de las aportaciones promedio

• Generación actual

La estimación de las aportaciones bimestrales, que en promedio registran en cada subcuenta los asegurados que sobreviven en el año (n+m) para la generación en transición y la generación actual bajo la LSS de 1997, se realiza de la siguiente manera.

Retiro, Cesantía en Edad Avanzada y Vejez

$${_{n+m}}\mathsf{APRCV}_{t+1,x+1}^{GT} = \frac{{_{n+m}}\mathsf{Sal}_{\mathsf{x}+1} \times 365 \times .065 \times {_{n+m}}T1_{t+1,x}^{GT} \times \mathsf{psa}_{\mathsf{t}+1,x}}{6 *_{n+m}\mathsf{AVGT}_{\mathsf{t}+1,x+1}}$$

En el caso de la subcuenta de RCV, se tiene la aportación que hace el Gobierno Federal por concepto de cuota social misma que se calcula por separado, ya que se efectúa de acuerdo al rango del Valor de la Unidad de Medida y Actualización en la que se encuentre cotizando el trabajador, tomando como límite inferior el salario mínimo.

$$_{n+m} APCS_{t+1,x+1}^{GT} = \frac{CS_{SR} \times 365 \times {_{n+m}}T1_{t+1,x}^{GT} \times psa_{t+1,x}}{6 *_{n+m} AVGT_{t+1,x+1}};$$

Donde

$$CS_{SR} = \begin{cases} 5.637098 & si \, \frac{n+mSal_x}{n+mSM} \leq 1 \, SM \\ 5.402219 & si \, 1.01 \leq \frac{n+mSal_x}{n+mUMA} \leq 4 \, UMA \\ 5.167341 & si \, 4.01 \leq \frac{n+mSal_x}{n+mUMA} \leq 7 \, UMA \\ 4.93246 & si \, 7.01 \leq \frac{n+mSal_x}{n+mUMA} \leq 10 \, UMA \\ 4.69758 & si \, 10.01 \leq \frac{n+mSal_x}{n+mUMA} \leq 15 \, UMA \\ 0 & si \, \frac{n+mSal_x}{n+mUMA} > 15 \, UMA \end{cases}$$

La aportación a la subcuenta de vivienda se hace de la siguiente forma.

$${}_{n+m} \mathsf{APVIV}^{GT}_{t+1,x+1} = \frac{{}_{n+m} Sal_{x+1} \times 365 \times .05 \times {}_{n+m} T1^{GT}_{t+1,x} \times psa_{t+1,x}}{6 * {}_{n+m} AVGT_{t+1,x+1}}$$

• Generación futura

Las aportaciones bimestrales promedio para los asegurados de esta generación que sobreviven un año más se realiza de forma similar a la que se expuso para la generación actual, sólo se hace la diferencia para los asegurados que se van incorporando en cada año de proyección.

Dado que la afiliación de los nuevos asegurados se realiza a mitad del año, la aportación se calcula para el mismo periodo conforme a lo siguiente:

$$_{n+m} \text{APRCV1}_{0,x+1}^{GF} = \frac{_{\text{n+m}} \text{Sal}_{\text{x+1}} \times 365 \times .065 \times _{\text{n+m}} \text{AsegIng}_{0,\text{x+1}}}{6*_{\text{n+m}} \text{AVGF}_{\text{t+1,x+1}}}$$

$$_{n+m}$$
APCS1 $_{0,x+1}^{GF} = \frac{\text{CS}_{SR} \times 365 \times {_{n+m}}\text{AsegIng}_{0,x+1}}{6 *_{n+m}\text{AVGF}_{t+1,x+1}}$; $\text{CS}_{SR} = \frac{{_{n+m}}\text{Sal}_{x+1}}{{_{n+m}}\text{UMA}}$

$$_{n+m}$$
APVIV1 $_{0,x+1}^{GF} = \frac{_{n+m}Sal_{x} \times 365 \times .05 \times _{n+m}AsegIng_{0,x+1}}{6*_{n+m}AVGF_{t+1,x+1}}$

Las aportaciones para los años subsecuentes se calculan de la siguiente manera:

$${}_{n+m} \mathsf{APRCV}^{GF}_{t+1,x+1} = \frac{{}_{n+m} \mathsf{Sal}_{\mathsf{x}+1} \times 365 \times .065 \times {}_{n+m} T1^{GF}_{t+1,x} \times \mathsf{psa}_{\mathsf{t}+1,\mathsf{x}}}{6 * {}_{n+m} \mathsf{AVGF}_{\mathsf{t}+1,\mathsf{x}+1}} + {}_{n+m} \mathsf{APRCV1}^{GF}_{0,x+1}$$

$${}_{n+m}\mathsf{APCS}^{GF}_{t+1,x+1} = \frac{\mathsf{CS}_{\mathsf{SR}} \times 365 \times {}_{n+m}T1^{GF}_{t+1,x} \times \mathsf{psa}_{t+1,x}}{6 * {}_{n+m}\mathsf{AVGT}_{t+1,x+1}} + {}_{n+m}\mathsf{APCS}1^{GF}_{0,x+1};$$

$${}_{n+m}\mathsf{APVIV}_{t+1,x+1}^{GF} = \frac{{}_{n+m}Sal_{x+1} \times 365 \times .05 \times {}_{n+m}T1_{t+1,x}^{GF} \times psa_{t+1,x}}{6 * {}_{n+m}AVGT_{t+1,x+1}} + {}_{n+m}\mathsf{APVIV}1_{0,x+1}^{GF}$$

ii) Estimación del saldo de la cuenta individual al final de cada año de proyección

Para estimar el saldo en cuenta individual al final de cada año de proyección n + m se considera la capitalización del saldo promedio registrado en el año [n + (m - 1)] más la capitalización de las aportaciones del año.

• Generación actual

La estimación del saldo de las diferentes subcuentas se realiza de la siguiente forma:

$${}_{n+m}SdoRCV_{t+1,x+1}^{GT} = \frac{\left({}_{n+(m-1)}SdoRCV_{t,x} \times {}_{n+m}T1_{t+1,x}^{GT} + {}_{n+(m-1)}SdoRCV_{t+1,x} \times {}_{n+m}T2_{t+1,x}^{GT} \right) \times psa_{t+1,x}}{{}_{n+m}AVGT_{t+1,x+1}} \\ \times \left(1 + i_{rcv}^b \right)^6 \times (1 - Csdo_{n+m}) + {}_{n+m}APRCV_{t+1,x+1} \times \\ Cap_{rcv}^6 \times \left(1 - \frac{Csdo_{n+m}}{2} \right) \\ + \frac{\left({}_{n+(m-1)}SdoCS_{t,x} \times {}_{n+m}T1_{t+1,x}^{GT} + {}_{n+(m-1)}SdoCS_{t+1,x} \times {}_{n+m}T2_{t+1,x}^{GT} \right) \times psa_{t+1,x}}{{}_{n+m}AVGT_{t+1,x+1}} \\ \times \left(1 + i_{rcv}^b \right)^6 \times (1 - Csdo_{n+m}) + {}_{n+m}APCS_{t+1,x+1} \times \\ Cap_{rcv}^6 \times \left(1 - \frac{Csdo_{n+m}}{2} \right) \\ + \frac{1}{2} \left(1 +$$

$${}_{n+m}SdoVIV_{t+1,x+1}^{GT} = \frac{\left({}_{n+(m-1)}SdoVIV_{t,x} \times {}_{n+m}T1_{t+1,x}^{GT} + {}_{n+(m-1)}SdoVIV_{t+1,x} \times {}_{n+m}T2_{t+1,x}^{GT}\right) \times psa_{t+1,x}}{{}_{n+m}AVGT_{t+1,x+1}} \\ \times \left(1 + i_{viv}^{b}\right)^{6} + {}_{n+m}APVIV1_{t+1,x+1} \times Cap_{viv}^{6}$$

Donde:

$$\text{Cap}_{rcv}^{k} = \frac{\left(1 + i_{rcv}^{b}\right)^{k-1} - 1}{i_{rcv}^{b}} \times \left(1 + i_{rcv}^{b}\right)^{1/2} + 1$$

$$Cap_{viv}^{k} = \frac{\left(1 + i_{viv}^{b}\right)^{k-1} - 1}{i_{viv}^{b}} \times \left(1 + i_{viv}^{b}\right)^{1/2} + 1$$

La estimación del saldo acumulado en la cuenta individual de los asegurados de la generación actual y futura se realiza igual que para la generación en transición.

Generación futura

Para la generación futura la estimación del saldo en cuenta individual al final del año n+m se realiza considerando:

- Para los asegurados vigentes en el año [n + (m-1)] y que sobreviven al final del año (n+m) el procedimiento es igual al que se sigue para la generación actual.
- Para los nuevos ingresantes en cada año de proyección, el cálculo se realiza de la siguiente manera:

$$_{n+m}SdoRCV1_{0,x+1}^{GF} = {_{n+m}APRCV1_{0,x+1}^{GF}} \times \operatorname{Cap}_{rcv}^{3} \times \left(1 - \frac{\operatorname{Csdo}_{n+m}}{2}\right)$$

$$_{n+m}SdoCS1_{0,x+1}^{GF} = {_{n+m}APCS1_{0,x+1}^{GF}} \times \quad \mathsf{Cap}_{\mathsf{rcv}}^{3} \times \left(1 - \frac{\mathsf{Csdo}_{\mathsf{n+m}}}{2}\right)$$

$$_{n+m}SdoVIV1_{0,x+1}^{GF} = _{n+m}APVIV1_{0,x+1}^{GF} \times Cap_{viv}^{3}$$

b) Saldo acumulado en cuenta individual de los asegurados que tienen una baja de la actividad laboral.

Para los asegurados que fallecen o los que sufren una invalidez, se toma el supuesto de que se darán de baja a mitad del año.

La estimación del saldo en cuenta individual se calcula diferenciado para t=0 y para $t\geq 1$.

En el caso de t=0 sólo aplica para las generaciones actual LSS97 y futura, ya que la generación en transición no existen asegurados con antigüedad igual a cero. La fórmula queda de la siguiente manera

$${}_{n+(m+1)}^{f,Inv^{D}} SdoRCV_{0,x+1}^{GA} = \left[{}_{n+m} SdoPromRCV_{0,x}^{GA} \times (1+\mathbf{i}_{rcv}^{b})^{3} + \left(\frac{{}_{n+m} Sal_{x} \times 365 \times .065 \times {}_{n+m} T1_{0,x}^{GA}}{6*_{n+m} AVGA_{0,x+1}} \times \quad \mathsf{Cap}_{rcv}^{3} \right) \right] \times \left(1 - \frac{\mathit{Csdo}_{n+m}}{2} \right) + \left(\frac{{}_{n+m} Sal_{x} \times 365 \times .065 \times {}_{n+m} T1_{0,x}^{GA}}{6*_{n+m} AVGA_{0,x+1}} \times \right) + \left(\frac{{}_{n+m} Sal_{x} \times 365 \times .065 \times {}_{n+m} T1_{0,x}^{GA}}{6*_{n+m} AVGA_{0,x+1}} \times \right) + \left(\frac{{}_{n+m} Sal_{x} \times 365 \times .065 \times {}_{n+m} T1_{0,x}^{GA}}{6*_{n+m} AVGA_{0,x+1}} \times \right) + \left(\frac{{}_{n+m} Sal_{x} \times 365 \times .065 \times {}_{n+m} T1_{0,x}^{GA}}{6*_{n+m} AVGA_{0,x+1}} \times \right) + \left(\frac{{}_{n+m} Sal_{x} \times 365 \times .065 \times {}_{n+m} T1_{0,x}^{GA}}{6*_{n+m} AVGA_{0,x+1}} \times \right) + \left(\frac{{}_{n+m} Sal_{x} \times 365 \times .065 \times {}_{n+m} T1_{0,x}^{GA}}{6*_{n+m} AVGA_{0,x+1}} \times \right) + \left(\frac{{}_{n+m} Sal_{x} \times 365 \times .065 \times {}_{n+m} T1_{0,x}^{GA}}{6*_{n+m} AVGA_{0,x+1}} \times \right) + \left(\frac{{}_{n+m} Sal_{x} \times 365 \times .065 \times {}_{n+m} T1_{0,x}^{GA}}{6*_{n+m} AVGA_{0,x+1}} \times \right) + \left(\frac{{}_{n+m} Sal_{x} \times 365 \times .065 \times {}_{n+m} T1_{0,x}^{GA}}{6*_{n+m} AVGA_{0,x+1}} \times \right) + \left(\frac{{}_{n+m} Sal_{x} \times 365 \times .065 \times {}_{n+m} T1_{0,x}^{GA}}{6*_{n+m} AVGA_{0,x+1}} \times \right) + \left(\frac{{}_{n+m} Sal_{x} \times 365 \times .065 \times {}_{n+m} T1_{0,x}^{GA}}{6*_{n+m} AVGA_{0,x+1}} \times \right) + \left(\frac{{}_{n+m} Sal_{x} \times 365 \times .065 \times {}_{n+m} T1_{0,x}^{GA}}{6*_{n+m} AVGA_{0,x+1}} \times \right) + \left(\frac{{}_{n+m} Sal_{x} \times 365 \times .065 \times {}_{n+m} T1_{0,x}^{GA}}{6*_{n+m} AVGA_{0,x+1}} \times \right) + \left(\frac{{}_{n+m} Sal_{x} \times 365 \times .065 \times {}_{n+m} T1_{0,x}^{GA}}{6*_{n+m} AVGA_{0,x+1}} \times \right) + \left(\frac{{}_{n+m} Sal_{x} \times 365 \times .065 \times {}_{n+m} T1_{0,x}^{GA}}{6*_{n+m} AVGA_{0,x+1}} \times \right) + \left(\frac{{}_{n+m} Sal_{x} \times 365 \times .065 \times {}_{n+m} T1_{0,x}^{GA}}{6*_{n+m} AVGA_{0,x+1}} \times \right) + \left(\frac{{}_{n+m} Sal_{x} \times 365 \times {}_{n+m} T1_{0,x}^{GA}}{6*_{n+m} AVGA_{0,x+1}} \times \right) + \left(\frac{{}_{n+m} Sal_{x} \times 365 \times {}_{n+m} T1_{0,x}^{GA}}{6*_{n+m} AVGA_{0,x+1}} \times \right) + \left(\frac{{}_{n+m} Sal_{x} \times 365 \times {}_{n+m} T1_{0,x}^{GA}}{6*_{n+m} AVGA_{0,x+1}} \times \right) + \left(\frac{{}_{n+m} Sal_{x} \times 365 \times {}_{n+m} T1_{0,x+1}^{GA}}{6*_{n+m} AVGA_{0,x+1}} \times \right$$

$$\frac{f,Inv^{D}}{n + (m+1)} SdoCS_{0,x+1}^{GA} = \left[\frac{cS_{SR} \times 365 \times \frac{T1_{0,x}^{GA}}{n + m} \times 10_{0,x}^{GA}}{6 * \frac{1}{n + m} \text{AVGA}_{0,x+1}} \times \text{Cap}_{rcv}^{3} \right] \times \left(1 - \frac{Csdo_{n+m}}{2} \right)$$

$$\underset{n+(m+1)}{{}^{f,Inv}{}^{D}} SdoVIV_{0,x+1}^{GA} = \left[\underset{n+m}{{}^{f,Inv}{}^{D}} SdoPromVIV_{0,x}^{GA} \times (1+i_{viv}^{b})^{3} + \left(\frac{\underset{n+m}{{}^{f,Inv}{}^{D}} Sdo \times .05 \times \underset{n+m}{{}^{f}} T1_{0,x}^{GA}}{6*_{n+m} AVGA_{0,x+1}} \times \right. \right]$$

Donde:

 $_{n+m}SdoPromRCV_{0,x}^{GA}$ = Es el saldo promedio en la subcuenta de retiro, cesantía en edad avanzada y vejez, de los asegurados en el año (n+m) de edad x y antigüedad 0, que sufrieron una invalidez o fallecieron a causa de una enfermedad o accidente no laboral.

 $_{n+m}SdoPromCS_{0,x}^{GA}$ = Es el saldo promedio en la subcuenta de retiro, cesantía en edad avanzada y vejez por concepto de cuota social, de los asegurados en el año (n+m) de edad x y antigüedad 0, que sufrieron una invalidez o fallecieron a causa de una enfermedad o accidente no laboral.

 $_{n+m}SdoPromVIV_{0,x}^{GA}$ = Es el saldo promedio en la subcuenta de vivienda de los asegurados en el año (n+m) de edad x y antigüedad 0, que sufrieron una invalidez o fallecieron a causa de una enfermedad o accidente no laboral.

 $_{n+(m+1)}^{f,lnv^D}SdoRCV_{0,x+1}^{GA}$ = Es el saldo en la subcuenta de retiro, cesantía en edad avanzada y vejez en el año (n+m) de los asegurados de edad x y antigüedad 0 que fallecen (f) o se invalidan (Inv^D) .

 $_{n+(m+1)}^{f,lnv^D} SdoCS_{0,x+1}^{GA}$ = Es el saldo promedio en la subcuenta de retiro, cesantía en edad avanzada y vejez por concepto de cuota social en el año (n+m) de los asegurados de edad x y antigüedad 0 que fallecen (f) o se invalidan (lnv^D) .

 $\int_{n+(m+1)}^{f,lnv^D} SdoVIV_{0,x+1}^{GA}$ = Es el saldo en la subcuenta de vivienda en el año (n+m) de los asegurados de edad x y antigüedad 0 que fallecen (f) o se invalidan (Inv^D) .

Para $t \ge 1$, aplica para todas las generaciones, el procedimiento es el siguiente:

$$\begin{split} \frac{f_{,}lnv^{D}}{n+(m+1)}SdoRCV_{t+1,x+1}^{GT} &= \frac{\left(n+m\text{SdoRCV}_{t,x} \times_{n+m}T1_{t+1,x}^{GT} + n+m\text{SdoRCV}_{t+1,x} \times_{n+m}T2_{t+1,x}^{GT}\right)}{n+m} \times \left(1+i_{\text{rcv}}^{\text{b}}\right)^{3} \left(1-\frac{Csdo_{n+(m+1)}}{2}\right) \\ &+ \frac{n+m\text{Sal}_{x} \times 365 \times .065 \times_{n+m}T1_{t+1,x}^{GT}}{6*_{n+m}\text{AVGT}_{t+1,x+1}} \times \text{Cap}_{rcv}^{3} \times \left(1-\frac{Csdo_{n+(m+1)}}{2}\right) \end{split}$$

$$\begin{split} \frac{{_{f,Inv}}^{D}}{{_{n+(m+1)}}}SdoCS_{t+1,x+1}^{GT} &= \frac{\left({_{n+m}}SdoCS_{t,x} \times {_{n+m}}T1_{t+1,x}^{GT} + {_{n+m}}SdoCS_{t+1,x} \times {_{n+m}}T2_{t+1,x}^{GT} \right)}{{_{n+m}}T1_{t+1,x}^{GT} + {_{n+m}}T2_{t+1,x}^{GT}} \times \left({1 + i_{rcv}^{b}} \right)^{3} \left({1 - \frac{{Csdo_{n+(m+1)}}}{2}} \right) \\ &+ \frac{{CS_{SR} \times 365 \times {_{n+m}}T1_{t+1,x}^{GT}}}{{6 * {_{n+m}}AVGT_{t+1,x+1}^{GT}}} \times Cap_{rcv}^{3} \times \left({1 - \frac{{Csdo_{n+(m+1)}}}{2}} \right) \end{split}$$

$$\begin{split} \frac{{}_{n+(m+1)}^{f,Inv^D}SdoVIV_{t+1,x+1}^{GT}}{n+(m+1)}SdoVIV_{t+1,x+1} &= \frac{\left({}_{n+m}SdoVIV_{t+1,x} \times {}_{n+m}T1_{t+1,x}^{GT} + {}_{n+m}SdoVIV_{t+1,x} \times {}_{n+m}T2_{t+1,x}^{GT} \right)}{n+m} \times \left(1 + i_{viv}^b \right)^3 \\ &+ \frac{{}_{n+m}Sal_x \times 365 \times .05 \times {}_{n+m}T1_{t+1,x}^{GT}}{6 *_{n+m}AVGT_{t+1,x+1}} \times Cap_{rcv}^3 \end{split}$$

El total del saldo acumulado en la cuenta individual queda de la siguiente forma:

$$\frac{f, lnv^D}{n + (m+1)} SdoCI_{t+1, x+1}^{GT} = \frac{f, lnv^D}{n + (m+1)} SdoRCV_{t+1, x+1}^{GT} + \frac{f, lnv^D}{n + (m+1)} SdoCS_{t+1, x+1}^{GT} + \frac{f, lnv^D}{n + (m+1)} SdoVIV_{t+1, x+1}^{GT}$$

El mismo procedimiento se lleva a cabo para las generaciones actual de la LSS 97 y futura.

Pensionados con estatus temporal

Para la estimación del saldo en la cuenta individual de los pensionados con estatus temporal, no se calculan aportaciones durante el tiempo que permanecen en dicho estatus, sólo se calculan rendimientos; considerando el supuesto de que las salidas se dan a medio año.

El cálculo del saldo para el primer medio año queda de la siguiente forma:

$$_{n+m}^{lnv^{T}}SdoPromRCV_{x+1}^{GT} = _{n+(m-1)}^{lnv^{T}}SdoPromRCV_{x}^{GT} \times \left(1 + i_{rcv}^{b}\right)^{3} \times \left(1 - \frac{Csdo_{n+m}}{2}\right)$$

$$_{n+m}^{lnv^{T}}SdoPromCS_{x+1}^{GT} = {_{n+(m-1)}^{lnv^{T}}}SdoPromCS_{x}^{GT} \times \left(1 + i_{rcv}^{b}\right)^{3} \times \left(1 - \frac{Csdo_{n+m}}{2}\right)$$

$$_{n+m}^{lnv^{T}}SdoPromVIV_{x+1}^{GT} = _{n+(m-1)}^{lnv^{T}}SdoPromVIV_{x}^{GT} \times \left(1 + i_{rcv}^{b}\right)^{3}$$

Donde:

 $^{lnv^T}SdoPromRCV^{GT}_{t,x}$ = Es el saldo promedio en la subcuenta de retiro, cesantía en edad avanzada y vejez, de los asegurados de la generación en transición que sufrieron una invalidez y que tienen estatus de temporal en el año (n+m) de edad x.

 $^{lnv^T}_{n+(m+1)}SdoPromCS^{GT}_{x+1}$ = Es el saldo acumulado promedio en la subcuenta de retiro, cesantía en edad avanzada y vejez por concepto de cuota social, de los asegurados de la generación en transición que sufrieron una invalidez y que tienen estatus de temporal en el año (n+m) de edad x.

 $_{n+(m+1)}^{lnv^T} SdoPromVIV_{x+1}^{GT}$ = Es el saldo acumulado promedio en la subcuenta de vivienda, de los asegurados de la generación en transición que sufrieron una invalidez y que tienen estatus de temporal en el año (n+m) de edad x.

El saldo de la cuenta individual para el primer año de los pensionados con carácter temporal se calcula de la siguiente manera:

Para el segundo año, el saldo de la cuenta individual de los pensionados con carácter temporal el cálculo queda de la siguiente manera:

$${}_{n+(m+2)}^{lnv^{T}}SdoPromRCV_{x+3}^{GT} = {}_{n+(m+1)}^{lnv^{T}}SdoRPromCV_{x+2}^{GT} \times \left(1 + i_{rcv}^{b}\right)^{6} \times \left(1 - Csdo_{n+(m+2)}\right)$$

$${}_{n+(m+2)}^{lnv^{T}}SdoPromCS_{x+3}^{GT} = {}_{n+(m+1)}^{lnv^{T}}SdoPromCS_{x+2}^{GT} \times \left(1 + i_{rcv}^{b}\right)^{6} \times \left(1 - Csdo_{n+(m+2)}\right)$$

$${}_{n+(m+2)}^{lnv^T}SdoPromVIV_{x+3}^{GT} = {}_{n+(m+1)}^{lnv^T}SdoPromVIV_{x+2}^{GT} \times \left(1+\mathrm{i}_{\mathrm{rcv}}^{\mathrm{b}}\right)^6$$

Finalmente, el saldo de la cuenta individual para el tercer año que permanece como pensionado temporal, se capitaliza sólo medio año, ya que se tiene como supuesto que las salidas se dan a mitad del año. La fórmula queda de la siguiente manera:

$${}^{lnv^{T}}_{n+\left(m+2+\frac{1}{2}\right)}SdoPromRCV^{GT}_{x+3} = {}^{lnv^{T}}_{n+\left(m+2\right)}SdoPromRCV^{GT}_{x+3} \times \left(1+i^{b}_{rcv}\right)^{3} \times \left(1-\frac{Csdo_{n+(m+3)}}{2}\right)^{2}$$

$${}^{lnv^{T}}_{n+\left(m+2+\frac{1}{2}\right)}SdoPromCS^{GT}_{x+3} = {}^{lnv^{T}}_{n+\left(m+2\right)}SdoPromCS^{GT}_{x+3} \times \left(1+\mathrm{i}^{\mathrm{b}}_{\mathrm{rcv}}\right)^{3} \times \left(1-\frac{\mathrm{Csdo}_{\mathrm{n+(m+3)}}}{2}\right)$$

$${}_{n+\left(m+2+\frac{1}{2}\right)}^{lnv^T}SdoPromVIV_{x+3}^{GT} = {}_{n+\left(m+2\right)}^{lnv^T}SdoPromVIV_{x+3}^{GT} \times \left(1+\mathrm{i}_{\mathrm{rcv}}^{\mathrm{b}}\right)^3$$

Quedando el saldo de la cuenta individual para los inválidos que van a pasar a definitivos de la siguiente manera:

$$\frac{lnv^{T}}{n + \left(m + 2 + \frac{1}{2}\right)} SdoPromCI_{x + 3}^{GT} = \frac{lnv^{T}}{n + \left(m + 2 + \frac{1}{2}\right)} SdoPromRCV_{x + 3}^{GT} + \frac{lnv^{T}}{n + \left(m + 2 + \frac{1}{2}\right)} SdoPromCS_{x + 3}^{GT} + \frac{lnv^{T}}{n + \left(m + 2 + \frac{1}{2}\right)} SdoPromVIV_{x + 3}^{GT}$$

VI.3.2 Estimación del Gasto por Pensiones del Seguro de Invalidez y Vida

VI.3.2.1 Estimación del Monto Constitutivo

De acuerdo a lo establecido en la LSS, en su artículo 120, el Instituto calculará el monto constitutivo necesario para la contratación de la renta vitalicia y en su caso del seguro de sobrevivencia. Para calcular el monto constitutivo, se requiere de lo siguiente:

- i) cuantía básica e importe de la pensión;
- ii) anualidad; y,
- iii) el número de asegurados fallecidos o pensionados,

El punto iii) se detalló en la sección VI.2.2 y VI.2.3.

Una vez calculado el Monto Constitutivo se debe calcular la suma asegurada, la cual de acuerdo a lo establecido en los artículos 120 y 127 resulta de la diferencia positiva entre el monto constitutivo y el saldo acumulado en la cuenta individual, y esta debe ser transferida a la institución de seguros que el pensionado o beneficiarios elijan. La suma asegurado corresponde al gasto que el Instituto eroga por el pago de pensiones.

VI.3.2.2 Cuantía básica e importe de la pensión

Al declararse la invalidez, el asegurado recibirá una pensión mensual definitiva, la cual será equivalente al 35% del salario promedio de las últimas 500 semanas de cotización⁴⁰, anteriores al otorgamiento de la misma, o las que tuvieren, siempre que sean suficientes para ejercer el derecho.

$$_{n+m}CB_{x}^{iv} = 0.35 \times _{n+m}SP_{x}^{iv}$$

$$_{n+m}SP_{x}^{iv} = \frac{1}{d}\sum_{k=0}^{d}{_{n+m-k}Sal_{x-k}} \times \frac{365}{12}$$

Donde:

d = min(m,10)

Así que la cuantía de la pensión anual quedaría de la siguiente forma:

⁴⁰ Considerando que los salarios están en términos reales no se aplica el Índice Nacional de Precios al Consumidor para actualizar los salarios al momento de tener derecho a un beneficio.

$$_{n+m}CP_{x}^{iv} = Max[CB_{x}^{iv} \times (1 + AF + AA), PG] \times \frac{13}{12}$$

Donde

$$AA = 0.20$$

$$AF = \begin{cases} 0.10 & \text{por c\'onyuge} \\ 0.10 & \text{por cada hijo} \\ 0.10 & \text{por ascendiente} \end{cases}$$

Volumen anual de las pensiones temporales

La estimación del volumen de pensiones durante el tiempo que el inválido tiene una pensión temporal es como sigue:

$$\begin{split} &_{n+m} VAPin_{x+1} = (_{n+m} Inv_{x+1}^T \times _{n+m} CP_{x+1}^{iv}) \times \frac{1}{2} + (_{n+m} InvFall_x^T \times _{n+m} CP_x^{iv}) \times \frac{1}{4} \\ &_{n+(m+1)} VAPin_{x+2} = (_{n+(m+1)} Inv_{x+2}^T \times _{n+(m+1)} CP_{x+2}^{iv}) + (_{n+(m+1)} InvFall_{x+1}^T \times _{n+(m+1)} CP_{x+1}^{iv}) \times \frac{1}{2} \\ &_{n+(m+2)} VAPin_{x+3} = (_{n+(m+2)} Inv_{x+3}^T \times _{n+(m+2)} CP_{x+3}^{iv}) + (_{n+(m+2)} InvFall_{x+2}^T \times _{n+(m+2)} CP_{x+2}^{iv}) \times \frac{1}{2} \\ &_{n+(m+2+\frac{1}{2})} VAPin_{x+3} = (_{n+(m+2+\frac{1}{2})} Inv_{x+3}^T \times _{n+(m+2+\frac{1}{2})} CP_{x+3}^{iv}) \times \frac{1}{2} + (_{n+(m+2+\frac{1}{2})} InvFall_{x+2}^T \times _{n+(m+2+\frac{1}{2})} CP_{x+2}^{iv}) \times \frac{1}{4} \end{split}$$

La LSS establece que los importes de las pensiones se incrementarán en cada año conforme a la inflación; sin embargo, la valuación actuarial se realiza en términos reales, por tal motivo los importes de las pensiones se mantienen en pesos del año base de valuación, es decir, no se les aplica ningún incremento.

VI.3.2.3 Estimación de las anualidades

Para el cálculo del monto constitutivo se requiere de las anualidades⁴¹. Las que se calculan son las que corresponden al pensionado directo y sus beneficiarios, así como a los beneficiarios de los asegurados fallecidos a causa de una invalidez. A continuación se describe la forma en que se calcula cada una de ellas:

a. Anualidades correspondientes a los pensionados por invalidez, ya sea con carácter definitivo o temporal,

$$\ddot{a}_{x} = \sum_{k=0}^{w-x} {}_{k}P_{x} \times V^{k}$$

⁴¹ Una anualidad es una serie de pagos iguales que se realizan en un periodo de tiempo determinado, considerando una tasa de descuento i.

Donde

 $_{\rm k}$ P $_{\rm x}$ = Probabilidad de que un pensionado de edad x alcance la edad x+k. w= edad máxima de la tabla de mortalidad que es 110 años.

 $v^k = \frac{1}{(1+i)^k}$ Valor presente de una unidad monetaria estimada a una tasa de descuento al final del k-ésimo año.

El cálculo de la anualidad considera que a partir de edad 60 se otorgará el incremento del 11% de la pensión al que se hace referencia en el artículo decimocuarto transitorio de la LSS 97, esto con el fin de que si el pensionado aún no cumple los 60, el monto constitutivo tenga contemplado dicho incremento

- b. Para el cálculo del seguro de sobrevivencia se requiere de la anualidad del beneficiario (esposa(o), hijos o padres) y de una anualidad conjunta entre el pensionado directo y sus beneficiarios.
 - i. Anualidades beneficiarios

La fórmula para calcular las anualidades de los beneficiarios es igual a la que se utiliza para determinar la anualidad del pensionado directo, únicamente cambia el subíndice que identifica a cada beneficiario (y_1 : esposa; y_2 : esposo; z_1 : hija; z_2 : hijo; s_1 : madre; s_2 : padre).

ii. Anualidades Conjuntas

$$\ddot{a}_{xy_1} = \sum_{k=0}^{w} \ _k P_x \times \ _k P_{y_1} \times V^k$$

$$\ddot{a}_{xy_2} = \sum_{k=0}^{w} {}_k P_x \times {}_k P_{y_2} \times V^k$$

$$\ddot{a}_{xy_1z_1} = \sum_{k=0}^{w-z} {}_k P_x \times {}_k P_{y_1} \times {}_k P_{z_1} \times V^k$$

$$\ddot{a}_{xy_1z_2} = \sum_{k=0}^{w-z} {}_kP_x \times {}_kP_{y_1} \times {}_kP_{z_2} \times V^k$$

$$\ddot{a}_{xy_2z_1} = \sum_{k=0}^{w-z} {}_k P_x \times {}_k P_{y_2} \times {}_k P_{z_1} \times V^k$$

$$\ddot{a}_{xy_2z_2} = \sum_{k=0}^{w-z} {}_k P_x \times {}_k P_{y_2} \times {}_k P_{z_2} \times V^k$$

$$\ddot{a}_{xs_1} = \sum_{k=0}^{w} {}_k P_x \times {}_k P_{s_1} \times V^k$$
$$\ddot{a}_{xs_2} = \sum_{k=0}^{w} {}_k P_x \times {}_k P_{s_2} \times V^k$$

c. Anualidades para correspondientes a los beneficiarios (viudas, viudos, huérfanos mujeres, huérfanos hombres, ascendientes mujeres y ascendientes hombres) de los asegurados fallecidos a causa de una invalidez.

La fórmula para calcular las anualidades de los beneficiarios es igual a la que se utiliza para determinar las anualidades conjuntas y el seguro de sobrevivencia, sólo que el titular se considera fallecido y se cambia el subíndice que identifica a cada beneficiario (y₁: viuda; y₂: viudo; z₁: huérfano mujer; z₁: huérfano hombre; s₁ ascendiente mujer; y, s₂ ascendiente hombre).

VI.3.2.4 Estimación del Monto Constitutivo

La determinación del monto constitutivo se divide en dos grupos. El primero se refiere al monto constitutivo que integra los recursos necesarios para otorgar la renta vitalicia al inválido, así como para cubrir el seguro de sobrevivencia que garantiza el otorgamiento de una pensión a sus beneficiarios al momento de que el titular de la pensión fallece.

El segundo estima los recursos necesarios para otorgar la renta vitalicia a los beneficiarios del asegurado o pensionado con carácter temporal fallecido por causas distintas a un riesgo de trabajo. Los beneficiarios referido son viudas, viudos, huérfanos mujeres, huérfanos hombres, ascendientes mujeres, y ascendientes hombres.

Además, de acuerdo con el artículo 141 de la LSS el cual establece en su segundo párrafo que el Gobierno Federal aportará la diferencia en los casos que la cuantía de la pensión sea inferior a la pensión garantizada a fin de que el trabajador pueda adquirir una pensión vitalicia, a esta diferencia se le conoce como costo fiscal, el cual se obtiene como un porcentaje respecto a los montos constitutivos pagados, y se calcula por separado para invalidez y para vida. El porcentaje calculado se aplica al monto constitutivo estimado para invalidez y para vida respectivamente.

Por otra parte, al determinar el monto constitutivo, se aplica un recargo igual al 2%, para efectos de gastos de administración y adquisición de las compañías aseguradoras. El cálculo del monto constitutivo se describe a continuación.

VI.3.2.4.1 Monto constitutivo de invalidez

a) Renta Vitalicia del Inválido, ya sea con carácter definitivo o temporal

$${}^{rv}_{n+m}MC_x \ = \begin{cases} {}_{n+m}CP_x^{iv} \times \ddot{a}_x \times {}_{n+m}Inv_x \ \times 1.02 & \text{si } x < 60 \\ {}_{n+m}CP_x^{iv} \times \ddot{a}_x \times {}_{n+m}Inv_x \ \times 1.02 \times 1.11 & \text{si } x \geq 60 \end{cases}$$

Donde:

2%: Corresponde al recargo del monto constitutivo por gastos de administración y adquisición.

11%: Es el incremento que se da a los pensionados a partir de que cumplen 60 años.

b) Seguro de Sobrevivencia del Inválido

El cálculo del seguro de sobrevivencia SS_x se obtiene como la diferencia entre la anualidad del beneficiario y la anualidad conjunta del titular y el beneficiario. Dicho cálculo se realiza en función de la edad del inválido, por tal motivo es necesario aplicar las distribuciones de componentes familiares, las cuales indican el número de beneficiarios promedio por pensionado. Tomando en cuenta lo anterior el SS_x se calcula de la siguiente forma:

Para el titular hombre:

$$_{n+m}SS_{y_1} = \sum_{y=0}^{100} MatEspM_{x,y_1} \times (\ddot{a}_{y_1} - \ddot{a}_{x,y_1})$$

$$_{n+m}SS_{y_2} = \sum_{y=0}^{100} MatEspH_{x,y_2} \times (\ddot{a}_{y_2} - \ddot{a}_{x,y_2})$$

$$_{n+m}SS_{z_{1}} = \sum_{z=0}^{24} MatHijas_{x,z_{1}} \times (\ddot{a}_{z_{1}} - \ddot{a}_{x,y_{1},z_{1}})$$

$$_{n+m}SS_{z_{2}} = \sum_{z=0}^{24} MatHijos_{x,z_{2}} \times (\ddot{a}_{z_{2}} - \ddot{a}_{x,y_{1},z_{2}})$$

$$_{n+m}SS_{s_1} = \sum_{z=30}^{100} MatMad_{x,s_1} \times (\ddot{a}_{s_1} - \ddot{a}_{x,s_1})$$

$$_{n+m}SS_{s_{2}} = \sum_{z=33}^{100} MatPad_{x,s_{2}} \times (\ddot{a}_{s_{2}} - \ddot{a}_{x,s_{2}})$$

Para el caso de la titular mujer el cálculo es el mismo, sólo se consideran las distribuciones de titulares mujeres.

A partir de lo anterior, el cálculo del monto constitutivo del seguro de sobrevivencia $\binom{ss}{n+m}MC_x$) para el titular hombre se calcula de la siguiente manera

$${}_{n+m}^{ss} MC_x^{espm} = \begin{cases} {}_{n+m}^{c}CP_x^{iv} \times 0.80 \times {}_{n+m}^{c}SS_{y_1} \times {}_{n+m}^{c}Inv_x \times 1.02 & \text{si } {}_{n+m}^{c}CP_x^{iv} \times 0.80 > 1.5 \text{ SM} \\ {}_{n+m}^{c}CP_x^{iv} \times 0.80 \times {}_{n+m}^{c}SS_{y_1} \times {}_{n+m}^{c}Inv_x \times 1.02 \times 1.11 & \text{si } {}_{n+m}^{c}CP_x^{iv} \times 0.80 \leq 1.5 \text{ SM} \end{cases}$$

$${}_{n+m}^{ss} MC_x^{esph} = \begin{cases} {}_{n+m}^{c}CP_x^{iv} \times 0.80 \times {}_{n+m}^{c}SS_{y_2} \times {}_{n+m}^{c}Inv_x \times 1.02 & \text{si } {}_{n+m}^{c}CP_x^{iv} \times 0.80 > 1.5 \text{ SM} \\ {}_{n+m}^{c}CP_x^{iv} \times 0.80 \times {}_{n+m}^{c}SS_{y_2} \times {}_{n+m}^{c}Inv_x \times 1.02 \times 1.11 & \text{si } {}_{n+m}^{c}CP_x^{iv} \times 0.80 \leq 1.5 \text{ SM} \end{cases}$$

$${}_{n+m}^{ss}MC_x^{hija} = {}_{n+m}CP_x^{iv} \times 0.20 \times {}_{n+m}SS_{z_1} \times {}_{n+m}Inv_x \times 1.02 \times 1.11$$

$${}_{n+m}^{ss}MC_{x}^{hijo} = {}_{n+m}CP_{x}^{iv} \times 0.20 \times {}_{n+m}SS_{z_{2}} \times {}_{n+m}Inv_{x} \times 1.02 \times 1.11$$

$${}_{n+m}^{ss}MC_{x}^{madre} = {}_{n+m}CP_{x}^{iv} \times 0.20 \times {}_{n+m}SS_{s_{1}} \times {}_{n+m}Inv_{x} \times 1.02 \times 1.11$$

$${}_{n+m}^{ss}MC_{x}^{padre} = {}_{n+m}CP_{x}^{iv} \times 0.20 \times {}_{n+m}SS_{s_{2}} \times {}_{n+m}Inv_{x} \times 1.02 \times 1.11$$

Por lo que el monto constitutivo del seguro de sobrevivencia queda de la siguiente manera:

$${}^{ss}_{n+m}MC_x = {}^{ss}_{n+m}MC_x^{espm} + {}^{ss}_{n+m}MC_x^{esph} + {}^{ss}_{n+m}MC_x^{hija} + {}^{ss}_{n+m}MC_x^{hijo} + {}^{ss}_{n+m}MC_x^{madre} + {}^{ss}_{n+m}MC_x^{padre}$$

El procedimiento para calcular el monto constitutivo de una titular mujer es igual que para el titular hombre.

c) Monto Constitutivo Total

$$_{n+m}MC_{x}^{inv} = _{n+m}^{rv}MC_{x} + _{n+m}^{ss}MC_{x}$$

VI.3.2.4.2 Monto constitutivo de vida

Dado que el cálculo del seguro de muerte SV_x se debe de obtener en función de la edad y sexo del asegurado fallecido, es necesario aplicar a las anualidades correspondientes de viudez, orfandad y ascendencia las distribuciones de componentes familiares del titular fallecido, las cuales nos indican el número de

beneficiarios promedio por asegurado fallecido. Tomando en cuenta lo anterior el SV_x para un titular hombre se calcula de la siguiente forma:

$$_{n+m}SV_{y_1} = \sum_{y=0}^{100} MatViuM_{x,y_1} \times \ddot{a}_{y_1}$$

$$_{n+m}SV_{y_2} = \sum_{y=0}^{100} MatViuH_{x,y_2} \times \ddot{a}_{y_2}$$

$$_{\mathrm{n+m}}\mathrm{SV}_{\mathrm{z_{1}}} = \sum_{\mathrm{z=0}}^{\mathrm{24}}\mathrm{MatOrfM}_{\mathrm{x,z_{1}}} imes \ddot{\mathrm{a}}_{\mathrm{z_{1}}}$$

$$_{\mathrm{n+m}}$$
SV $_{\mathrm{z}_{2}}=\sum_{\mathrm{z=0}}^{\mathrm{24}}\mathrm{MatOrfH}_{\mathrm{x,z}_{2}} imes\ddot{\mathrm{a}}_{\mathrm{z}_{2}}$

$$_{\mathrm{n+m}}\mathrm{SV}_{\mathrm{S}_{1}} = \sum_{\mathrm{z=30}}^{\mathrm{100}}\mathrm{MatAscM}_{\mathrm{x,s}_{1}} imes \ddot{\mathrm{a}}_{\mathrm{S}_{1}}$$

$$_{n+m}SV_{s_2} = \sum_{z=33}^{100} MatAscH_{x,s_2} \times \ddot{a}_{s_2}$$

El seguro de sobrevivencia para la titular mujer se calcula igual que para los hombres, únicamente se utilizan las distribuciones de componentes de titulares fallecidos mujeres.

A partir de lo anterior, la estimación de los recursos necesarios para otorgar una pensión a los beneficiarios de un asegurado hombre fallecido para la generación en transición (GT), se muestra a continuación. Para la generación actual (GA97) y la generación futura (GF) el procedimiento es el mismo, al igual que para los titulares mujeres.

$${}_{n+m}^{ss}MC_{x}^{vium} = \begin{cases} {}_{n+m}^{c}CP_{x}^{iv} \times 0.80 \times {}_{n+m}^{c}SV_{y_{1}} \times {}_{n+m}^{c}AFGT_{x} \times 1.02 & \text{si } {}_{n+m}^{c}CP_{x}^{iv} \times 0.80 > 1.5 \text{ SM} \\ {}_{n+m}^{c}CP_{x}^{iv} \times 0.80 \times {}_{n+m}^{c}SV_{y_{1}} \times {}_{n+m}^{c}AFGT_{x} \times 1.02 \times 1.11 & \text{si } {}_{n+m}^{c}CP_{x}^{iv} \times 0.80 \leq 1.5 \text{ SM} \end{cases}$$

$${}_{n+m}^{ss}MC_x^{viuh} = \begin{cases} {}_{n+m}^{c}CP_x^{iv} \times 0.80 \times {}_{n+m}SV_{y_2} \times {}_{n+m}AFGT_x \times 1.02 & \text{si } {}_{n+m}CP_x^{iv} \times 0.80 > 1.5 \text{ SM} \\ {}_{n+m}^{c}CP_x^{iv} \times 0.80 \times {}_{n+m}SV_{y_2} \times {}_{n+m}AFGT_x \times 1.02 \times 1.11 & \text{si } {}_{n+m}^{c}CP_x^{iv} \times 0.80 \leq 1.5 \text{ SM} \end{cases}$$

$${}_{n+m}^{ss} MC_x^{orfm} = {}_{n+m} CP_x^{iv} \times 0.20 \times {}_{n+m} SV_{z_1} \times {}_{n+m} AFGT_x \times 1.02 \times 1.11$$

$$_{n+m}^{ss}MC_{x}^{orfh} = _{n+m}CP_{x}^{iv} \times 0.20 \times _{n+m}SV_{z_{2}} \times _{n+m}AFGT_{x} \times 1.02 \times 1.11$$

$$_{n+m}^{ss}MC_{x}^{ascm} = _{n+m}CP_{x}^{iv} \times 0.20 \times _{n+m}SV_{s_{1}} \times _{n+m}AFGT_{x} \times 1.02 \times 1.11$$

$${}_{n+m}^{ss}MC_{x}^{asch} = {}_{n+m}CP_{x}^{iv} \times 0.20 \times {}_{n+m}SV_{s_{2}} \times {}_{n+m}AFGT_{x} \times 1.02 \times 1.11$$

Este mismo procedimiento se hace para los fallecidos de pensionados por invalidez con carácter temporal.

Por consiguiente el monto constitutivo total de muerte es:

$${}^{\mathit{SV}}_{n+m}MC_x \ = {}^{\mathit{ss}}_{n+m}MC_x^{vium} + {}^{\mathit{ss}}_{n+m}MC_x^{viuh} + {}^{\mathit{ss}}_{n+m}MC_x^{orfm} + {}^{\mathit{ss}}_{n+m}MC_x^{orfh} + {}^{\mathit{ss}}_{n+m}MC_x^{ascm} + {}^{\mathit{ss}}_{n+m}MC_x^{asch}$$

La estimación de los montos constitutivos de los inválidos con pensión temporal y que fallecen antes de que se les otorgue una pensión definitiva, es igual a la que se sigue para el cálculo del monto constitutivo del asegurado fallecido, por lo que únicamente se tendrá que remplazar a los asegurados fallecidos $\binom{n+m}{n+m} InvFall_x^T$.

VI.3.2.5 Estimación de la suma asegurada

De acuerdo a los artículos 120 y 127 de la LSS, el Instituto deberá entregar a la institución de seguros la suma asegurada que resulte de la diferencia positiva entre el monto constitutivo y el saldo acumulado en la cuenta individual.

VI.3.2.5.1 Suma asegurada de invalidez

La suma asegurada de los inválidos a los cuales se les otorgará una renta vitalicia se estima como sigue:

$${}^{Inv^D}_{\mathbf{n}+\mathbf{m}} \mathbf{S} \mathbf{A}_{\mathbf{x}} = \begin{cases} \mathbf{n} + \mathbf{m} \mathbf{M} \mathbf{C}_{\mathbf{x}}^{Inv^D} - \left(\mathbf{n} + \mathbf{m}^D \mathbf{S} \mathbf{doC} \mathbf{I}_{\mathbf{x}} \times \mathbf{n} + \mathbf{m} \mathbf{Inv}_{\mathbf{x}}^D \right) & \text{si } \mathbf{n} + \mathbf{m} \mathbf{M} \mathbf{C}_{\mathbf{x}}^{Inv^D} - \left(\mathbf{n} + \mathbf{m}^D \mathbf{S} \mathbf{doC} \mathbf{I}_{\mathbf{x}} \times \mathbf{n} + \mathbf{m} \mathbf{Inv}_{\mathbf{x}}^D \right) > 0 \\ \mathbf{0} & \text{si } \mathbf{n} + \mathbf{m} \mathbf{M} \mathbf{C}_{\mathbf{x}}^{Inv^D} - \left(\mathbf{n} + \mathbf{m}^D \mathbf{S} \mathbf{doC} \mathbf{I}_{\mathbf{x}} \times \mathbf{n} + \mathbf{m} \mathbf{Inv}_{\mathbf{x}}^D \right) \leq 0 \end{cases}$$

Para los pensionados por invalidez con carácter temporal, se hace el mismo procedimiento anterior, sólo tomando el saldo de la cuenta individual que les corresponde.

VI.3.2.5.2 Suma asegurada de vida

En el modelo de la valuación actuarial, el seguro de vida está en función de la edad del asegurado (SV_x), por lo que para obtener la suma asegurada se requiere el saldo promedio de la cuenta individual del asegurado fallecido, para ello se hace lo siguiente:

$${}_{n+m}^{f} SdoPromCI_{x} = \frac{\sum_{t=3}^{50} {}_{n+m}^{f} SdoCI_{t,x} \times {}_{n+m} AF_{t,x}^{GT}}{{}_{n+m} AF_{t,x}^{GT}}$$

Donde

 $_{n+m}^{f}$ SdoPromCI_x= Es el saldo promedio en la cuenta individual de un asegurado fallecido a causa de una enfermedad o accidente no laboral en el año (n+m) de edad x.

Una vez que se tiene el saldo promedio de los asegurados fallecidos y ya que el seguro de vida está en función de la edad del titular, para obtener el saldo promedio de la cuenta individual que se utilizará para los beneficiarios, se aplican las distribuciones de componentes familiares a dicho saldo.

$${}_{n+m}^{\quad f} SdoPromCI_{x}^{vium} = \sum_{y=0}^{100} MatViu_{x,y_{1}} \times {}_{n+m}^{\quad f} SdoPromCI_{x}$$

$$_{n+m}^{f}$$
SdoPromCI_x^{viuh} = $\sum_{y=0}^{100}$ MatViu_{x,y2} × $_{n+m}^{f}$ SdoPromCI_x

$$_{n+m}^{f}$$
SdoPromCI $_{x}^{orfm} = \sum_{z=0}^{24} MatOrf_{x,z_{1}} \times {_{n+m}^{f}}SdoPromCI_{x}$

$$_{n+m}^{f} SdoPromCI_{x}^{orfh} = \sum_{z=0}^{24} MatOrf_{x,z_{2}} \times {_{n+m}^{f} SdoPromCI_{x}}$$

$$_{n+m}^{f}$$
SdoPromCI_x^{ascm} = $\sum_{z=30}^{100}$ MatAsc_{x,S₁} × $_{n+m}^{f}$ SdoPromCI_x

$$_{n+m}^{f}$$
SdoPromCI $_{x}^{asch} = \sum_{z=33}^{100} MatAsc_{x,s_{2}} \times {}_{n+m}^{f}$ SdoPromCI $_{x}$

El saldo acumulado total de la cuenta individual queda de la siguiente manera:

A partir de lo anterior, la estimación de la suma asegurada para cada una de las generaciones es como se indica enseguida; no obstante, sólo se indica el procedimiento para la generación en transición (GT); ya que el que corresponde para la generación actual (GA97) y la generación futura (GF) es el mismo.

El cálculo para la suma asegurada de la generación actual (GA97) y la generación futura es el mismo que para la generación en transición.

En el caso de los pensionados por invalidez con carácter temporal que fallecen, se realiza el mismo procedimiento anterior únicamente considerando el saldo de la cuenta individual que les corresponde, quedando de la siguiente forma:

$$\frac{lnv^T - f}{n + m} SA_x^{GT} = \begin{cases} n + m MC_x^{Inv^T - f} - \left(\frac{lnv^T - f}{n + m}SdoPromCI_x \times_{n + m} AFGT_x\right) & \text{si } n + m MC_x^{Inv^T - f} - \left(\frac{lnv^T - f}{n + m}SdoPromCI_x \times_{n + m} AFGT_x\right) > 0 \\ 0 & \text{si } n + m MC_x^{Inv^T - f} - \left(\frac{lnv^T - f}{n + m}SdoPromCI_x \times_{n + m} AFGT_x\right) \leq 0 \end{cases}$$

El cálculo para la suma asegurada de la generación actual (GA97) y la generación futura es el mismo que para la generación en transición.

VII Resultados de la valuación actuarial del Seguro de Invalidez y Vida al 31 de diciembre de 2018

VII.1 Generación conjunta (Generación Actual y Generación Futura)

VII.1.1 Proyección demográfica de pensiones iniciales

	Nićma awa ala	Pensiones	iniciales		Pensiones por	
Año de proyección	Número de asegurados	Pensiones derivadas ^{1/}	Invalidez	Total de pensionados	cada 1,000 asegurados	
	(a)	(b)	(c)	(d)=(b)+(c)	(e) = (d)/(a)	
2019	20,354,781	16,499	19,881	36,380	1.79	
2020	20,857,544	18,685	20,228	38,913	1.87	
2021	21,399,840	20,730	20,903	41,633	1.95	
2022	21,977,636	22,790	18,774	41,564	1.89	
2023	22,571,032	24,983	20,014	44,997	1.99	
2024	23,203,021	27,309	21,312	48,621	2.10	
2025	23,843,620	29,739	22,687	52,425	2.20	
2030	27,339,527	43,678	30,678	74,356	2.72	
2035	31,211,271	69,398	40,314	109,712	3.52	
2040	35,152,121	91,450	51,412	142,862	4.06	
2045	38,682,523	108,857	60,250	169,107	4.37	
2050	41,232,262	122,053	67,332	189,385	4.59	
2055	43,339,586	132,321	71,791	204,112	4.71	
2060	45,554,703	142,987	77,402	220,390	4.84	
2065	47,883,132	154,984	84,534	239,518	5.00	
2070	50,330,674	166,852	90,411	257,262	5.11	
2075	52,903,429	177,184	93,851	271,035	5.12	
2080	55,607,807	185,798	95,799	281,597	5.06	
2085	58,450,547	194,796	98,137	292,933	5.01	
2090	61,438,735	205,816	102,769	308,585	5.02	
2095	64,579,819	219,959	109,463	329,423	5.10	
2100	67,881,628	234,801	116,525	351,325	5.18	
2105	71,352,394	249,468	124,018	373,486	5.23	
2110	75,000,770	263,409	131,166	394,575	5.26	
2115	78,835,853	276,668	137,174	413,842	5.25	
2118	81,230,479	284,886	140,407	425,293	5.24	

 $^{^{1/2}}$ Incluye las pensiones de viudez, orfandad y ascendencia derivadas del fallecimiento de asegurados, así como del fallecimiento de pensionados temporales.

VII.1.2 Flujo de gasto de las prestaciones valuadas. Generación conjunta. Millones de pesos de 2018

				G	asto	·	Prima de gasto (%)			
Año de proyección	Volumen salarial ^{1/}	Suma Asegurada	Temporales	Costo fiscal (CF)	Total pensiones ^{2/}	Gasto administrativo	Total	Pensiones	Total	
	(a)	(b)	(c)	(d)	(e)=(b)+(c)-(d)	(f)	(g) = (e)+(f)	(h)= (e)/(a)	(i)= (g)/(a)	
2019	2,446,671	10,122	1,452	2,582	8,993	4,733	13,726	0.37	0.56	
2020	2,539,585	11,662	1,986	2,948	10,699	4,890	15,590	0.42	0.61	
2021	2,625,867	13,456	2,410	3,406	12,460	5,051	17,511	0.47	0.67	
2022	2,717,040	15,913	2,776	3,987	14,701	5,216	19,918	0.54	0.73	
2023	2,810,025	18,129	2,802	4,558	16,373	5,388	21,761	0.58	0.77	
2024	2,905,560	20,492	2,887	5,176	18,203	5,562	23,766	0.63	0.82	
2025	3,002,776	23,059	3,034	5,851	20,242	5,740	25,983	0.67	0.87	
2030	3,518,807	38,609	4,039	10,114	32,534	6,696	39,231	0.92	1.11	
2035	4,075,242	67,974	5,185	17,083	56,076	7,670	63,746	1.38	1.56	
2040	4,685,728	96,407	6,528	23,178	79,757	8,710	88,467	1.70	1.89	
2045	5,290,879	117,584	7,877	29,007	96,454	9,636	106,090	1.82	2.01	
2050	5,820,233	133,301	9,033	33,329	109,005	10,417	119,423	1.87	2.05	
2055	6,248,851	145,706	9,877	36,633	118,949	11,089	130,038	1.90	2.08	
2060	6,686,331		10,802	40,066	130,066		141,876	1.95	2.12	
2065	7,155,262	174,951	11,982	44,124	142,809	12,638	155,447	2.00	2.17	
2070	7,638,627	189,174	13,158	48,043	154,289	13,534	167,823	2.02	2.20	
2075	8,138,151	200,247	14,013	51,024	163,236	14,489	177,725	2.01	2.18	
2080	8,676,055	209,729	14,580	53,280	171,029	15,515	186,544	1.97	2.15	
2085	9,270,142	220,892	15,131	55,714	180,309	16,677	196,986	1.95	2.12	
2090	9,934,006	236,647	15,973	59,267	193,352	18,023	211,375	1.95	2.13	
2095	10,654,682	257,224	17,258	64,258	210,224	19,534	229,758	1.97	2.16	
2100	11,400,079	279,655	18,709	69,815	228,550	21,148	249,698	2.00	2.19	
2105	12,185,219	303,644	20,278	75,832	248,090	22,858	270,948	2.04	2.22	
2110	13,018,424	327,669	21,873	81,982	267,559		292,226	2.06	2.24	
2115	13,901,242	351,183	23,328	87,919	286,592	26,596	313,188	2.06	2.25	
2118	14,461,110	365,594	24,138	91,448	298,285		326,120	2.06	2.26	
Valor										
presente a	112,606,818	1,988,819	152,425	497,811	1,643,432	207,475	1,850,907	1.46	1.64	
50 años										
Valor										
presente a	182,069,453	3,800,021	277,000	957,276	3,119,745	327,040	3,446,785	1.71	1.89	
100 años ^{3/}										

^{1/}El volumen salarial corresponde al de la generación conjunta.

^{2'} Incluye el gasto por pensiones definitivas, pensiones temporales y gasto administrativo, además tiene descontado el costo fiscal que se genera por el otorgamiento de rentas vitalicias con pensión mínima garantizada (PG), el cual está a cargo del Gobierno Federal.

³/El periodo de 100 años considera la extinción de las obligaciones pendientes de otorgar a los asegurados del último año de proyección.

VII.2 Generación actual

VII.2.1 Proyección demográfica de pensiones iniciales

	Número de	Pensiones	iniciales	Total de	Pensiones por
Año de proyección	asegurados	Pensiones derivadas ^{1/}	Invalidez	pensionados	cada 1,000 asegurados
	(a)	(b)	(c)	(d)=(b)+(c)	(e) = (d)/(a)
2019	19,552,697	16,499	19,881	36,380	1.86
2020	19,282,834	18,684	20,228	38,913	2.02
2021	19,014,876	20,728	20,903	41,631	2.19
2022	18,752,655	22,785	18,774	41,559	2.22
2023	18,482,193	24,418	19,784	44,201	2.39
2024	18,203,486	25,957	20,772	46,729	2.57
2025	17,910,263	27,452	21,785	49,237	2.75
2030	16,219,932	34,831	27,200	62,030	3.82
2035	14,043,673	47,843	32,603	80,446	5.73
2040	11,597,980	53,678	37,074	90,752	7.82
2045	8,782,449	50,171	35,962	86,133	9.81
2050	5,843,122	39,139	29,159	68,298	11.69
2055	2,828,318	23,659	15,696	39,355	13.91
2060	596,681	9,153	2,836	11,989	20.09
2065	51,298	4,923	194	5,117	99.74
2070	3,335	6,563	20	6,583	0.00
2075	47	8,593	1	8,594	0.00
2080	0	8,942	0	8,942	0.00
2085	0	7,294	0	7,294	0.00
2090	0	3,518	0	3,518	0.00
2095	0	387	0	387	0.00
2100	0	2	0	2	0.00
2105	-	0	-	0	0.00
2110	-	0	-	0	0.00
2115	-	-	-	-	0.00
2118	-	-	-	-	0.00

 $^{^{1/}}$ Incluye las pensiones de viudez, orfandad y ascendencia derivadas del fallecimiento de asegurados, así como del fallecimiento de pensionados temporales.

VII.2.2 Flujo de gasto por pensiones. Generación Actual. Millones de pesos de 2018

	Valuman		Gas	sto		Prima de
Año de	Volumen	Suma		Costo	Total	gasto
proyección	salarial ^{1/}	Asegurada	Temporales	fiscal (CF)	pensiones ^{2/}	(%)
	(a)	(b)	(c)	(d)	(e)=(b)+(c)-(d)	(f) = (e)/(a)
2019	2,411,959	10,122	1,452	2,582	8,992	0.37
2020	2,440,827	11,661	1,986	2,948	10,698	0.44
2021	2,458,369	13,454	2,410	3,406	12,458	0.51
2022	2,473,574	15,910	2,776	3,987	14,698	0.59
2023	2,483,477	17,790	2,798	4,478	16,110	0.65
2024	2,487,820	19,690	2,868	4,984	17,574	0.71
2025	2,485,851	21,704	2,990	5,523	19,170	0.77
2030	2,388,605	32,244	3,752	8,593	27,404	1.15
2035	2,140,756	50,855	4,456	13,264	42,047	1.96
2040	1,817,956	63,388	5,044	16,305	52,127	2.87
2045	1,422,724	62,465	5,176	17,148	50,493	3.55
2050	996,959	49,521	4,502	14,611	39,412	3.95
2055	518,452	28,012	2,853	9,149	21,716	4.19
2060	112,077	7,568	894	2,891	5,571	4.97
2065	8,094	475	58	211	322	3.98
2070	425	159	5	11	154	36.16
2075	5	185	0	0	185	0.00
2080	0	181	0	0	181	0.00
2085	0	144	0	0	144	
2090	0	70	0	0	70	0.00
2095	0	7	0	0	7	0.00
2100	0	0	0	0	0	0.00
2105	0	0	0	0	0	0.00
2110	0	0	0	0	0	0.00
2115	0	0	0	0	0	0.00
2118	0	0	0	0	0	0.00
Valor						
presente a 50 años	45,036,223	861,566	86,467	233,661	714,373	1.59
Valor						
presente a	45,036,567	862,166	86,472	233,670	714,968	1.59

 $^{^{1/}\}mathrm{El}$ Volumen salarial corresponde al de la generación actual.

^{2/} Incluye el gasto por pensiones definitivas y pensiones temporales, además tiene descontado el costo fiscal que se genera por el otorgamiento de rentas vitalicias con pensión mínima garantizada, el cual está a cargo del Gobierno Federal.

³/ El periodo de 100 años considera la extinción de las obligaciones pendientes de otorgar a los asegurados del último año de proyección

VII.2.3 Composición del flujo de gasto, invalidez. Generación Actual. Importes en millones de pesos de 2018

Año de	Volumen	Número de	Monto	constitutivo	Acumulado	Suma asegurada	Prima de
proyección	salarial	inválidos	Renta vitalicia	Seguro de sobrevivencia	en cuenta individual	neta de Costo Fiscal	gasto (%)
	(a)	(b)	(c)	(d)	(e)	(f)	(g)=(f)/(a)
2019	2,411,959	4,430	3,625	428	705	3,076	0.13
2020	2,440,827	4,705	3,930	541	593	3,609	0.15
2021	2,458,369	3,185	4,774	667	752	4,326	0.18
2022	2,473,574	7,086	5,527	1,534	996	6,065	0.25
2023	2,483,477	8,035	6,411	1,840	1,239	7,012	0.28
2024	2,487,820	8,992	7,326	2,178	1,517	7,988	0.32
2025	2,485,851	10,041	8,351	2,573	1,846	9,078	0.37
2030	2,388,605	15,454	14,037	4,770	4,292	14,516	0.61
2035	2,140,756	26,412	24,975	8,992	9,773	24,195	1.13
2040	1,817,956	36,661	35,177	12,976	16,573	31,580	1.74
2045	1,422,724	40,992	39,197	14,356	21,151	32,405	2.28
2050	996,959	36,477	34,673	12,557	20,843	26,392	2.65
2055	518,452	24,358	22,510	7,914	15,268	15,163	2.92
2060	112,077	8,697	7,578	2,524	5,956	4,155	3.71
2065	8,094	615	526	156	554	141	1.74
2070	425	69	43	13	65	1	0.35
2075	5	6	3	1	5	0	0.00
2080	0	0	0	0	0	0	0.00
2085	0	0	0	0	0	0	0.00
2090	0	0	0	0	0	0	0.00
2095	0	0	0	0	0	0	0.00
2100	0	0	0	0	0	0	0.00
2105	0	0	0	0	0	0	0.00
2110	0	0	0	0	0	0	0.00
2115	0	0	0	0	0	0	0.00
2118	0	0	0	0	0	0	0.00

VII.2.4 Composición del flujo de gasto derivado del fallecimiento de asegurados y pensionados de invalidez con carácter temporal. Generación Actual. Importes en millones de pesos de 2018

Año de proyección	Volumen salarial	Número de fallecidos	Número de pensiones derivadas ^{1/}	Monto constitutivo	Acumulado en cuenta individual	Suma asegurada neta de Costo Fiscal	Prima de gasto (%)
	(a)	(b)	(c)	(d)	(e)	(f)	(g)=(f)/(a)
2019	2,411,959	7,298	16,517	7,504	756	4,855	0.20
2020	2,440,827	8,111	18,694	8,678	922	5,568	0.23
2021	2,458,369	8,909	20,691	9,847	1,107	6,257	0.25
2022	2,473,574	9,772	22,785	11,140	1,323	7,010	0.28
2023	2,483,477	10,458	24,418	12,310	1,560	7,650	0.31
2024	2,487,820	11,107	25,957	13,498	1,824	8,277	0.33
2025	2,485,851	11,756	27,452	14,714	2,116	8,896	0.36
2030	2,388,605	15,326	34,831	21,792	4,093	12,239	0.51
2035	2,140,756	22,644	47,843	34,710	8,085	18,995	0.89
2040	1,817,956	27,802	53,678	43,850	12,096	23,423	1.29
2045	1,422,724	27,713	50,171	43,755	13,788	21,692	1.52
2050	996,959	22,662	39,139	35,532	12,563	16,279	1.63
2055	518,452	13,937	23,659	21,239	8,664	8,730	1.68
2060	112,077	4,370	9,153	6,475	3,555	2,197	1.96
2065	8,094	526	4,923	1,042	1,655	217	2.69
2070	425	96	6,563	703	2,318	148	34.78
2075	5	49	8,593	845	3,352	185	0.00
2080	0	26	8,942	861	3,697	181	0.00
2085	0	7	7,294	704	3,209	144	0.00
2090	0	1	3,518	349	1,679	70	0.00
2095	0	0	387	36	197	7	0.00
2100	0	0	2	0	1	0	0.00
2105	0	0	0	0	0	0	0.00
2110	0	0	0	0	0	0	0.00
2115	0	0	0	0	0	0	0.00
2118	0	0	0	0	0	0	0.00

VII.2.5 Saldo acumulado en la cuenta individual, asegurados activos. Generación Actual. Millones de pesos de 2018

			acumulad	o	Saldo pro	Saldo promedio por asegurado			
Año de	Número de	Retiro,			Retiro,				
proyección	asegurados	cesantía	Vivienda	Total	cesantía	Vivienda	Total		
1 3		y vejez ^{1/}			y vejez ^{1/}				
	(a)	(b)	(c)	(d) = (b) + (c)	(e) = (b)/(a)*1,000,000	(f) = (c)/(a)*1,000,000	(g) = (d)/(a)*1,000,000		
2019	19,552,697	2,074,871	874,991	2,949,863	106,117	44,750	150,867		
2020	19,282,834	2,262,215	934,658	3,196,872	117,318	48,471	165,789		
2021	19,014,876	2,449,033	994,184	3,443,217	128,796	52,285	181,080		
2022	18,752,655	2,636,347	1,053,959	3,690,306	140,585	56,203	196,788		
2023	18,482,193	2,821,595	1,112,868	3,934,463	152,666	60,213	212,879		
2024	18,203,486	3,004,041	1,170,659	4,174,701	165,026	64,310	229,335		
2025	17,910,263	3,181,590	1,226,537	4,408,127	177,641	68,482	246,123		
2030	16,219,932	3,956,063	1,465,214	5,421,277	243,901	90,334	334,235		
2035	14,043,673	4,349,865	1,580,591	5,930,456	309,738	112,548	422,287		
2040	11,597,980	4,383,459	1,574,566	5,958,025	377,950	135,762	513,712		
2045	8,782,449	3,999,610	1,407,394	5,407,004	455,409	160,251	615,660		
2050	5,843,122	3,145,178	1,079,292	4,224,469	538,270	184,711	722,982		
2055	2,828,318	1,836,927	591,936	2,428,863	649,477	209,289	858,766		
2060	596,681	530,914	143,874	674,787	889,778	241,123	1,130,901		
2065	51,298	57,752	15,022	72,774	1,125,826	292,848	1,418,675		
2070	3,335	4,963	1,131	6,095	1,488,180	339,214	1,827,394		
2075	47	115	17	132	2,444,383	370,773	2,815,156		
2080	0	0	0	0	0	0	0		
2085	0	0	0	0	0	0	0		
2090	0	0	0	0	0	0	0		
2095	0	0	0	0	0	0	0		
2100	0	0	0	0	0	0	0		
2105	0	0	0	0	0	0	0		
2110	0	0	0	0	0	0	0		
2115	0	0	0	0	0	0	0		
2118	0	0	0	0	0	0	0		

 $^{^{\}lor}$ El saldo de esta subcuenta incluye el saldo acumulado correspondiente a la aportación por concepto de cuota social que realiza el Gobierno Federal por cada trabajador asegurado. Fuente: Dirección de Finanzas, IMSS.

VII.2.6 Saldo acumulado en la cuenta individual, inválidos. Generación Actual. Millones de pesos de 2018

		Sa	ldo acumu	lado	Saldo promedio por inválido			
Año de	Número de	Retiro,			Retiro,			
	inválidos	cesantía	Vivienda	Total	cesantía	Vivienda	Total	
proyección		y vejez ^{1/}			y vejez ^{1/}			
	(a)	(b)	(c)	(d) = (b) + (c)	$(e) = (b)/(a)^{1},000,000$	(f) = (c)/(a)*1,000,000	(g) = (d)/(a)*1,000,000	
2019	4,430	507	198	705	114,446	44,639	159,086	
2020	4,705	429	164	593	91,228	34,780	126,008	
2021	3,185	547	205	752	171,831	64,390	236,221	
2022	7,086	720	276	996	101,621	38,995	140,616	
2023	8,035	899	339	1,239	111,924	42,246	154,170	
2024	8,992	1,105	412	1,517	122,907	45,783	168,690	
2025	10,041	1,349	497	1,846	134,315	49,480	183,795	
2030	15,454	3,164	1,128	4,292	204,735	72,958	277,693	
2035	26,412	7,208	2,565	9,773	272,890	97,116	370,005	
2040	36,661	12,169	4,405	16,573	331,932	120,145	452,077	
2045	40,992	15,478	5,673	21,151	377,594	138,399	515,994	
2050	36,477	15,262	5,582	20,843	418,388	153,021	571,409	
2055	24,358	11,211	4,057	15,268	460,239	166,571	626,810	
2060	8,697	4,378	1,577	5,956	503,468	181,345	684,814	
2065	615	406	149	554	659,907	241,649	901,556	
2070	69	47	18	65	679,773	254,052	933,825	
2075	6	4	1	5	644,412	243,841	888,252	
2080	0	0	0	0	0	0	C	
2085	0	0	0	0	0	0	C	
2090	0	0	0	0	0	0	C	
2095	0	0	0	0	0	0	C	
2100	0	0	0	0	0	0	C	
2105	0	0	0	0	0	0	C	
2110	0	0	0	0	0	0	C	
2115	0	0	0	0	0	0	C	
2118	0	0	0	0	0	0	O	

VEI saldo de esta subcuenta incluye el saldo acumulado correspondiente a la aportación por concepto de cuota social que realiza el Gobierno Federal por cada trabajador asegurado.
Fuente: Dirección de Finanzas, IMSS.

VII.2.7 Saldo acumulado en la cuenta individual, fallecidos de asegurados y pensionados de invalidez con carácter temporal. Generación Actual. Millones de pesos de 2018

		Sa	ldo acumu	lado	Saldo promedio por fallecido			
Año de	Número de	Retiro,		_	Retiro,		_	
proyección	fallecidos		Vivienda	Total	cesantía	Vivienda	Total	
		y vejez ^{1/}			y vejez ^{1/}			
	(a)	(b)	(c)	(d) = (b) + (c)	(e) = (b)/(a)*1,000,000	(f) = (c)/(a)*1,000,000	(g) = (d)/(a)*1,000,000	
2019	7,298	516		757	70,696	33,009	103,705	
2020	8,111	635	287	922	78,351	35,384	113,735	
2021	8,909	770	338	1,108	86,439	37,923	124,362	
2022	9,772	927	397	1,323	94,837	40,588	135,425	
2023	10,458	1,100	461	1,560	105,133	44,065	149,198	
2024	11,107	1,292	532	1,824	116,358	47,910	164,268	
2025	11,756	1,506	610	2,116	128,109	51,922	180,031	
2030	15,326	2,959	1,135	4,094	193,051	74,074	267,125	
2035	22,644	5,873	2,213	8,085	259,343	97,716	357,058	
2040	27,802	8,784	3,313	12,097	315,936	119,173	435,109	
2045	27,713	10,011	3,777	13,789	361,248	136,308	497,555	
2050	22,662	9,150	3,413	12,564	403,777	150,628	554,405	
2055	13,937	6,332	2,333	8,665	454,327	167,373	621,700	
2060	4,370	2,582	974	3,556	590,894	222,837	813,731	
2065	526	1,160	496	1,656	2,205,742	944,342	3,150,084	
2070	96	1,594	725	2,319	16,621,512	7,557,715	24,179,227	
2075	49	2,292	1,061	3,353	46,583,190	21,570,594	68,153,783	
2080	26	2,535	1,162	3,698	95,790,239	43,907,246	139,697,485	
2085	7	2,220	990	3,210	297,467,277	132,635,912	430,103,189	
2090	1	1,170	510	1,680	0	0	0	
2095	0	139	60	198	0	0	0	
2100	0	1	1	2	0	0	0	
2105	0	1	0	1	0	0	0	
2110	0	1	0	1	0	0	0	
2115	0	1	0	1	0	0	0	
2118	0	1	0	1	0	0	0	

 $^{^{\}lor}$ El saldo de esta subcuenta incluye el saldo acumulado correspondiente a la aportación por concepto de cuota social que realiza el Gobierno Federal por cada trabajador asegurado. Fuente: Dirección de Finanzas, IMSS.

VII.3 Generación Futura

VII.3.1 Proyección demográfica de pensiones iniciales

	Número de	Pensiones	iniciales	Total	Pensiones por
Año de	asegurados	Pensiones	Invalidez	de	cada 1,000
proyección	asegurados	derivadas ^{1/}	iiivaiidez	pensionado	asegurados
	(a)	(b)	(c)	(d)=(b)+(c)	(e)=(d)/(a)
2019	802,085	0	0	0	0.0000
2020	1,574,710	1	0	1	0.0003
2021	2,384,965	2	0	2	0.0009
2022	3,224,981	5	0	5	0.0015
2023	4,088,839	565	231	796	0.1946
2024	4,999,535	1,352	540	1,892	0.3785
2025	5,933,357	2,287	902	3,188	0.5373
2030	11,119,595	8,847	3,478	12,326	1.1085
2035	17,167,598	21,555	7,711	29,266	1.7047
2040	23,554,141	37,773	14,338	52,111	2.2124
2045	29,900,074	58,687	24,288	82,974	2.7751
2050	35,389,140	82,914	38,173	121,087	3.4216
2055	40,511,268	108,661	56,095	164,757	4.0669
2060	44,958,021	133,834	74,567	208,401	4.6355
2065	47,831,834	150,061	84,340	234,401	4.9005
2070	50,327,339	160,288	90,390	250,679	4.9810
2075	52,903,382	168,591	93,851	262,441	4.9608
2080	55,607,807	176,856	95,799	272,655	4.9032
2085	58,450,547	187,502	98,137	285,639	4.8868
2090	61,438,735	202,299	102,769	305,068	4.9654
2095	64,579,819	219,572	109,463	329,036	5.0950
2100	67,881,628	234,799	116,525	351,324	5.1755
2105	71,352,394	249,468	124,018	373,486	5.2344
2110	75,000,770	263,409	131,166	394,575	5.2609
2115	78,835,853	276,668	137,174	413,842	5.2494
2118	81,230,479	284,886	140,407	425,293	5.2356

 $^{^{1/}}$ Incluye las pensiones de viudez, orfandad y ascendencia derivadas del fallecimiento de asegurados, así como del fallecimiento de pensionados temporales Fuente: Dirección de Finanzas, IMSS.

VII.3.2 Flujo de gasto por pensiones. Generación Futura. Millones de pesos de 2018

				Gasto			
Año de proyección	Volumen salarial ^{1/}	Suma Asegurada	Temporales	Costo fiscal (CF)	Total pensiones ^{2/}	Prima de gasto (%)	
	(a)	(b)	(c)	(d)	(e)=(b)+(c)-(d)	(f)= (e)/(a)	
2019	34,712	0	0	0	0	0.00	
2020	98,758	1	0	0	1	0.00	
2021	167,498	2	0	0	2	0.00	
2022	243,466	3	0	0	3	0.00	
2023	326,548	339	4	80	259	0.08	
2024	417,740	803	19	192	610	0.15	
2025	516,924	1,355	45	327	1,027	0.20	
2030	1,130,202	6,365	287	1,522	4,843	0.43	
2035	1,934,486	17,119	729	3,819	13,300	0.69	
2040	2,867,772	33,019	1,484	6,873	26,147	0.91	
2045	3,868,155	55,119	2,701	11,859	43,260	1.12	
2050	4,823,275	83,781	4,531	18,719	65,062	1.35	
2055	5,730,399	117,694	7,024	27,484	90,210	1.57	
2060	6,574,254	151,763	9,908	37,175	114,588	1.74	
2065	7,147,168	174,475	11,925	43,912	130,563	1.83	
2070	7,638,202	189,015	13,152	48,032	140,983	1.85	
2075	8,138,145	200,062	14,013	51,024	149,038	1.83	
2080	8,676,055	209,548	14,580	53,280	156,268	1.80	
2085	9,270,142	220,748	15,131	55,714	165,034	1.78	
2090	9,934,006	236,577	15,973	59,267	177,309	1.78	
2095	10,654,682	257,217	17,258	64,258	192,959	1.81	
2100	11,400,079	279,655	18,709	69,815	209,840	1.84	
2105	12,185,219	303,644	20,278	75,832	227,812	1.87	
2110	13,018,424	327,669	21,873	81,982	245,687	1.89	
2115	13,901,242	351,183	23,328	87,919	263,264	1.89	
2118	14,461,110	365,594	24,138	91,448	274,147	1.90	
Valor							
presente a 50 años Valor	67,570,596	1,127,253	65,957	264,150	863,103	1.67	
presente a 100 años ^{3/}	137,032,886	2,937,855	190,527	723,605	2,214,250	2.14	

 $^{^{1\!/}\}text{El}$ volumen salarial corresponde al de la generación futura.

^{2/} Incluye el gasto por pensiones definitivas y pensiones temporales, además tiene descontado el costo fiscal que se genera por el otorgamiento de rentas vitalicias con pensión mínima garantizada, el cual está a cargo del Gobierno Federal.

^{3/} El periodo de 100 años considera la extinción de las obligaciones pendientes de otorgar a los asegurados del último año de proyección.

VII.3.3 Composición del flujo de gasto de invalidez. Generación Futura. Importes en millones de pesos de 2018

Volumei		Número de	Monto	constitutivo	Acumulado	Suma asegurada	Prima de
Año de proyección	salarial	inválidos	Renta vitalicia	Seguro de sobrevivencia	en cuenta individual	neta de Costo	gasto (%)
	(a)	(b)	(c)	(d)	(e)	(f)	(g)=(f)/(a)
2019	34,712	0	0	0	0	0	0.00
2020	98,758	0	0	0	0	0	0.00
2021	167,498	0	0	0	0	0	0.00
2022	243,466	0	0	0	0	0	0.00
2023	326,548	82	68	19	3	69	0.02
2024	417,740	191	159	45	9	161	0.04
2025	516,924	318	267	77	18	268	0.05
2030	1,130,202	2,065	1,831	553	181	1,802	0.16
2035	1,934,486	5,626	5,314	1,668	743	5,070	0.26
2040	2,867,772	10,962	11,042	3,629	2,034	10,188	0.36
2045	3,868,155	19,081	20,114	6,851	4,785	17,696	0.46
2050	4,823,275	30,738	33,818	11,884	10,052	28,073	0.58
2055	5,730,399	46,181	52,701	18,945	18,978	40,805	0.71
2060	6,574,254	63,876	74,558	26,999	31,373	53,361	0.81
2065	7,147,168	76,375	90,510	32,735	41,165	61,672	0.86
2070	7,638,202	83,052	100,010	36,183	46,720	66,940	0.88
2075	8,138,145	87,213	106,656	38,601	50,480	70,763	0.87
2080	8,676,055	89,438	111,039	40,238	52,396	73,886	0.85
2085	9,270,142	91,376	115,232	41,928	53,552	77,643	0.84
2090	9,934,006	94,792	121,583	44,589	55,534	83,173	0.84
2095	10,654,682	100,530	131,206	48,613	59,559	90,530	0.85
2100	11,400,079	107,047	142,241	53,377	64,570	98,713	0.87
2105	12,185,219	113,958	154,166	58,764	70,214	107,529	0.88
2110	13,018,424	120,896	166,340	63,911	76,224	115,981	0.89
2115	13,901,242	126,953	177,520	68,655	81,626	123,869	0.89
2118	14,461,110	130,135	183,726	71,400	84,413	128,553	0.89

VII.3.4Composición del flujo de gasto derivado del fallecimiento de asegurados y pensionados de invalidez con carácter temporal. Generación Futura. Importes en millones de pesos de 2018

Año de proyección	Volumen salarial	Número de fallecidos	Número de pensiones derivadas ^{1/}	Monto constitutivo	Acumulado en cuenta individual	Suma asegurada neta de Costo Fiscal	Prima de gasto (%)
	(a)	(b)	(c)	(d)	(e)	(f)	(g)=(f)/(a)
2019	34,712	0	0	0	0	0	0.00
2020	98,758	0	1	0	0	0	0.00
2021	167,498	0	2	0	0	0	0.00
2022	243,466	0	5	0	0	0	0.00
2023	326,548	259	565	260	8	187	0.06
2024	417,740	622	1,352	624	21	445	0.11
2025	516,924	1,050	2,287	1,064	41	754	0.15
2030	1,130,202	3,945	8,847	4,427	278	3,029	0.27
2035	1,934,486	9,368	21,555	11,886	1,027	8,207	0.42
2040	2,867,772	16,242	37,773	22,883	2,530	15,926	0.56
2045	3,868,155	25,616	58,687	38,258	5,359	25,521	0.66
2050	4,823,275	37,113	82,914	57,913	9,838	36,934	0.77
2055	5,730,399	50,322	108,661	81,200	16,261	49,340	0.86
2060	6,574,254	64,480	133,834	105,662	24,229	61,153	0.93
2065	7,147,168	73,560	150,061	122,091	29,945	68,810	0.96
2070	7,638,202	78,681	160,288	132,663	33,545	73,957	0.97
2075	8,138,145	82,116	168,591	140,763	36,204	78,183	0.96
2080	8,676,055	84,607	176,856	147,690	38,288	82,283	0.95
2085	9,270,142	87,254	187,502	155,668	40,781	87,287	0.94
2090	9,934,006	91,154	202,299	166,851	44,821	94,024	0.95
2095	10,654,682	96,669	219,572	181,561	50,377	102,308	0.96
2100	11,400,079	102,550	234,799	197,242	55,427	110,998	0.97
2105	12,185,219	108,629	249,468	213,933	60,532	120,145	0.99
2110	13,018,424	114,591	263,409	231,138	65,511	129,559	1.00
2115	13,901,242	120,005	276,668	248,364	70,045	139,238	1.00
2118	14,461,110	123,068	284,886	259,061	72,683	145,431	1.01

 $^{^{1/}}$ Incluye las pensiones de viudez, orfandad y ascendencia derivadas del fallecimiento de asegurados, así como del fallecimiento de pensionados temporales

VII.3.5 Saldo acumulado en la cuenta individual, asegurados activos. Generación Futura. Millones de pesos de 2018

		Sal	do acumul	ado	Saldo promedio por asegurado			
Año de	Número de	Retiro,			Retiro,			
proyección	asegurados	cesantía	Vivienda	Total	cesantía	Vivienda	Total	
		y vejez ^{1/}			y vejez ^{1/}			
	(a)	(b)	(c)	(d) = (b) + (c)	(e) = (b)/(a)*1,000,000	(f) = (c)/(a)*1,000,000	(g) = (d)/(a)*1,000,000	
2019	802,085	3,077	886	3,963	3,836	1,104	4,941	
2020	1,574,710	11,847	3,439	15,285	7,523	2,184	9,707	
2021	2,384,965	26,764	7,814	34,578	11,222	3,277	14,498	
2022	3,224,981	48,489	14,232	62,721	15,035	4,413	19,448	
2023	4,088,839	77,661	22,905	100,566	18,993	5,602	24,595	
2024	4,999,535	115,007	34,076	149,083	23,004	6,816	29,819	
2025	5,933,357	161,253	47,987	209,240	27,177	8,088	35,265	
2030	11,119,595	551,926	167,455	719,380	49,635	15,059	64,695	
2035	17,167,598	1,269,372	395,405	1,664,777	73,940	23,032	96,972	
2040	23,554,141	2,393,787	764,998	3,158,785	101,629	32,478	134,107	
2045	29,900,074	3,986,000	1,299,890	5,285,890	133,311	43,474	176,785	
2050	35,389,140	5,959,101	1,976,019	7,935,120	168,388	55,837	224,225	
2055	40,511,268	8,187,052	2,753,041	10,940,093	202,093	67,957	270,051	
2060	44,958,021	10,346,133	3,517,884	13,864,017	230,129	78,248	308,377	
2065	47,831,834	11,672,274	3,996,823	15,669,098	244,027	83,560	327,587	
2070	50,327,339	12,552,155	4,318,312	16,870,467	249,410	85,804	335,215	
2075	52,903,382	13,196,182	4,554,210	17,750,392	249,439	86,085	335,525	
2080	55,607,807	13,759,418	4,758,534	18,517,952	247,437	85,573	333,010	
2085	58,450,547	14,439,944	5,002,898	19,442,842	247,045	85,592	332,637	
2090	61,438,735	15,403,555	5,349,803	20,753,358	250,714	87,075	337,789	
2095	64,579,819	16,629,789	5,794,522	22,424,311	257,508	89,727	347,234	
2100	67,881,628	17,918,714	6,265,768	24,184,482	263,970	92,304	356,274	
2105	71,352,394	19,242,357	6,752,316	25,994,673	269,681	94,633	364,314	
2110	75,000,770	20,545,066	7,232,717	27,777,783	273,931	96,435	370,367	
2115	78,835,853	21,777,634	7,687,820	29,465,454	276,240	97,517	373,757	
2118	81,230,479	22,515,132	7,959,650	30,474,783	277,176	97,988	375,164	

 $^{^{\}lor}$ El saldo de esta subcuenta incluye el saldo acumulado correspondiente a la aportación por concepto de cuota social que realiza el Gobierno Federal por cada trabajador asegurado. Fuente: Dirección de Finanzas, IMSS.

VII.3.6 Saldo acumulado en la cuenta individual, inválidos. Generación Futura. Millones de pesos de 2018

		Saldo acumulado			Saldo promedio por inválido			
Año de proyección	Número de inválidos		Vivienda	Total	Retiro, cesantía	Vivienda	Total	
	(a)	y vejez ^{1/}	(c)	(d) = (b) + (c)	y vejez ^{1/} (e) = (b)/(a)*1,000,000	(f) = (c)/(a)*1000 000	(a) = (d)/(a)*1000 000	
2019	(a) O	(b)		(d) = (b) +(c)	(e) = (b)/(a) 1,000,000	(i) = (c)/(a) 1,000,000	(g) = (u)/(a) 1,000,000	
2020	0	0	0	0	0	0	0	
2021	0	0	0	0	0	0	0	
2022	0	0	0	0	0	0	0	
2023	82	3	1	3	32,027	10,078	42,104	
2024	191	7	2	9	, 36,913	11,608	48,521	
2025	318	13	4	18	42,097	13,238	55,335	
2030	2,065	138	43	181	66,650	21,035	87,685	
2035	5,626	563	180	743	100,029	32,033	132,062	
2040	10,962	1,532	502	2,034	139,778	45,795	185,573	
2045	19,081	3,588	1,197	4,785	188,021	62,741	250,763	
2050	30,738	7,506	2,546	10,052	244,204	82,818	327,022	
2055	46,181	14,121	4,857	18,978	305,773	105,174	410,947	
2060	63,876	23,272	8,101	31,373	364,332	126,818	491,150	
2065	76,375	30,469	10,696	41,165	398,941	140,045	538,986	
2070	83,052	34,533	12,188	46,720	415,796	146,748	562,544	
2075	87,213	37,272	13,208	50,480	427,368	151,443	578,811	
2080	89,438	38,655	13,741	52,396	432,199	153,636	585,835	
2085	91,376	39,483	14,069	53,552	432,098	153,968	586,066	
2090	94,792	40,922	14,612	55,534	431,704	154,146	585,850	
2095	100,530	43,859	15,700	59,559	436,280	156,173	592,453	
2100	107,047	47,512	17,059	64,570	443,839	159,356	603,195	
2105	113,958	51,621	18,594	70,214	452,979	163,163	616,142	
2110	120,896	55,992	20,233	76,224	463,137	167,354	630,492	
2115	126,953	59,912	21,715	81,626	471,920	171,045	642,965	
2118	130,135	61,930	22,484	84,413	475,887	172,771	648,658	

 $^{^{\}lor}$ El saldo de esta subcuenta incluye el saldo acumulado correspondiente a la aportación por concepto de cuota social que realiza el Gobierno Federal por cada trabajador asegurado. Fuente: Dirección de Finanzas, IMSS.

VII.3.7 Saldo acumulado en la cuenta individual, fallecidos de asegurados y pensionados de invalidez con carácter temporal. Generación Futura. Millones de pesos de 2018

		Saldo acumulado			Saldo promedio por fallecido			
Año de	Número de	Retiro,			Retiro,			
proyección	fallecidos	cesantía	Vivienda	Total	cesantía	Vivienda	Total	
proyection		y vejez ^{1/}			y vejez ^{1/}			
	(a)	(b)	(c)	(d) = (b) + (c)	(e) = (b)/(a)*1,000,000	(f) = (c)/(a)*1,000,000	(g) = (d)/(a)*1,000,000	
2019	0	0	0	0	0	0	0	
2020	0	0	0	0	0	0	0	
2021	0	0	0	0	0	0	0	
2022	0	0	0	0	0	0	0	
2023	259	6	2	8	22,891	7,190	30,081	
2024	622	16	5	21	26,206	8,215	34,421	
2025	1,050	31	10	41	29,984	9,398	39,382	
2030	3,945	211	67	278	53,581	16,877	70,459	
2035	9,368	778	249	1,027	83,015	26,610	109,625	
2040	16,242	1,905	625	2,530	117,298	38,458	155,756	
2045	25,616	4,017	1,342	5,359	156,822	52,385	209,207	
2050	37,113	7,345	2,493	9,838	197,920	67,165	265,085	
2055	50,322	12,099	4,162	16,261	240,439	82,707	323,146	
2060	64,480	17,974	6,254	24,229	278,754	96,996	375,750	
2065	73,560	22,169	7,776	29,945	301,367	105,716	407,083	
2070	78,681	24,797	8,748	33,545	315,152	111,187	426,338	
2075	82,116	26,728	9,476	36,204	325,490	115,400	440,890	
2080	84,607	28,230	10,058	38,288	333,656	118,881	452,536	
2085	87,254	30,019	10,762	40,781	344,039	123,338	467,377	
2090	91,154	32,919	11,903	44,821	361,137	130,577	491,713	
2095	96,669	36,912	13,465	50,377	381,839	139,292	521,131	
2100	102,550	40,556	14,870	55,427	395,478	145,007	540,485	
2105	108,629	44,246	16,286	60,532	407,317	149,919	557,237	
2110	114,591	47,850	17,661	65,511	417,572	154,120	571,693	
2115	120,005	51,133	18,912	70,045	426,091	157,595	583,686	
2118	123,068	53,042	19,641	72,683	431,000	159,595	590,594	

 $^{^{\}lor}$ El saldo de esta subcuenta incluye el saldo acumulado correspondiente a la aportación por concepto de cuota social que realiza el Gobierno Federal por cada trabajador asegurado. Fuente: Dirección de Finanzas, IMSS.

Anexo 1. Índice de Cuadros

Cuadro 1. Prestaciones y Requisitos del Seguro de Invalidez y Vida	2
Cuadro 2. Principales Estadísticas de la Población Considerada en la Valuación	
Actuarial del Seguro de Invalidez y Vida al 31 de Diciembre de 2018	5
Cuadro 3. Pensionados por Invalidez con Pensión Temporal Vigentes al 31 de	
Diciembre de 2018	7
Cuadro 4. Principales Supuestos Demográficos y Financieros utilizados en la	
Valuación Actuarial del Seguro de Invalidez y Vida para el periodo de	
100 años	9
Cuadro 5. Resumen de las Proyecciones Demográficas de la Valuación Actuaria	l
del Seguro de Invalidez y Vida	15
Cuadro 6. Resumen de las Proyecciones Financieras de la Valuación Actuarial d	el
Seguro de Invalidez y Vida al 31 de diciembre de 2018. Millones de	
pesos de 20187	17
Cuadro 7. Balance Actuarial al 31 de Diciembre de 2018 del Seguro de Invalidez y	/
Vida. Millones de pesos de 2018 ^{1/}	20
Cuadro 8. Resultados de los Escenarios de Riesgo de la Valuación Actuarial del	
Seguro de Invalidez y Vida. Millones de pesos de 2018	21
Cuadro 9. Valor Presente de Obligaciones Totales del SIV de los Diferentes	
Escenarios Valuados. Millones de pesos de 2018	23

Resultados

Anexo 2. Índice de Gráficas

Gráfica 1. Arbol de decisión del Seguro de Invalidez y Vida	.13
Gráfica 2. Financiamiento de los Montos Constitutivos por los Saldos Acumulad	
en las Cuentas Individuales	18
Gráfica 3. Comparativo entre la Prima de Gasto y la Prima de Ingreso Anual	19